The virtual element method for general variational-hemivariational inequalities with applications to contact mechanics

被引:4
|
作者
Xiao, Wenqiang [1 ]
Ling, Min [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国博士后科学基金;
关键词
Variational-hemivariational inequality; Virtual element method; Error estimates; Contact mechanics; NUMERICAL-ANALYSIS;
D O I
10.1016/j.cam.2023.115152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly analyzes the general elliptic variational-hemivariational inequalities with or without constraints by using the virtual element method. The approximations can be internal or external and a Ce ' a's type inequality is derived for a priori error estimates. Then, we apply the results to a variational-hemivariational inequality arising in frictional contact problems, and the optimal order error estimate is obtained for the linear virtual element solution under appropriate solution regularity assumptions. Finally, numerical simulation results are reported to show the performance of the proposed method, in particular, numerical convergence orders are in good agreement with the theoretical predictions.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] THE ROTHE METHOD FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO CONTACT MECHANICS
    Bartosz, Krzysztof
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 861 - 883
  • [2] Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics
    Han, Weimin
    MATHEMATICS AND MECHANICS OF SOLIDS, 2018, 23 (03) : 279 - 293
  • [3] Evolutionary variational-hemivariational inequalities with applications to dynamic viscoelastic contact mechanics
    Han, Jiangfeng
    Lu, Liang
    Zeng, Shengda
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [4] Differential variational-hemivariational inequalities with application to contact mechanics
    Migorski, Stanislaw
    Cai, Dong-ling
    Dudek, Sylwia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [5] Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics
    Migorski, Stanislaw
    Ogorzaly, Justyna
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [6] Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics
    Stanislaw Migórski
    Justyna Ogorzaly
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [7] HISTORY-DEPENDENT DIFFERENTIAL VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO CONTACT MECHANICS
    Liu, Zhenhai
    Van Thien Nguyen
    Yao, Jen-Chih
    Zeng, Shengda
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (04): : 1073 - 1087
  • [8] History-dependent variational-hemivariational inequalities in contact mechanics
    Migorski, Stanislaw
    Ochal, Anna
    Sofonea, Mircea
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 604 - 618
  • [9] Numerical analysis of history-dependent variational-hemivariational inequalities with applications in contact mechanics
    Xu, Wei
    Huang, Ziping
    Han, Weimin
    Chen, Wenbin
    Wang, Cheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 : 364 - 377
  • [10] A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS
    Han, Weimin
    Migorski, Stanislaw
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) : 3891 - 3912