A reinforcement learning-based neighborhood search operator for multi-modal optimization and its applications

被引:5
|
作者
Hong, Jiale
Shen, Bo [1 ]
Pan, Anqi
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-modal optimization problem; Niching methods; Reinforcement learning; Inverse kinematics; PARTICLE SWARM OPTIMIZER; DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.eswa.2024.123150
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a reinforcement learning -based neighborhood search operator (RLNS) is proposed for multimodal optimization problems where the main novelties lie in the reinforcement learning -based neighborhood range selection strategy, the neighborhood subpopulation generation strategy and the local vector encirclement model. The reinforcement learning -based neighborhood range selection strategy is proposed to dynamically adjust the subpopulation size to address the issue of too many parameters to be adjusted in the multi -modal optimization algorithm based on the niching methods, while the neighborhood subpopulation generation strategy and the local vector encirclement model are designed with the hope of enhancing the individual's ability to local exploitation to obtain more accurate solutions. To verify the effectiveness of the proposed RLNS, SSA-RLNS, PSO-RLNS and EO-RLNS are proposed by integrating the proposed RLNS with the existing sparrow search algorithm, particle swarm optimization and equilibrium optimizer. The performances of the proposed SSA-RLNS, PSO-RLNS, EO-RLNS and existing multi -modal optimization algorithms are tested in CEC2015 multi -niche benchmark functions. The experimental results show that the SSA-RLNS, PSO-RLNS and EO-RLNS could locate multiple global optimal solutions with satisfactory accuracy, which illustrate that the proposed RLNS could be successfully used to deal with multi -modal optimization problems by integrating with common population -based optimization algorithms. Finally, the SSA-RLNS is successfully applied in the inverse kinematics of robot manipulator.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-Modal Transformer and Reinforcement Learning-Based Beam Management
    Ghassemi, Mohammad
    Zhang, Han
    Afana, Ali
    Sediq, Akram Bin
    Erol-Kantarci, Melike
    IEEE Networking Letters, 2024, 6 (04): : 222 - 226
  • [2] Reinforcement Learning-Based Resource Allocation for Streaming in a Multi-Modal Deep Space Network
    Ha, Taeyun
    Oh, Junsuk
    Lee, Donghyun
    Lee, Jeonghwa
    Jeon, Yongin
    Cho, Sungrae
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 201 - 206
  • [3] A differential evolution with adaptive neighborhood mutation and local search for multi-modal optimization
    Sheng, Mengmeng
    Chen, Shengyong
    Liu, Weibo
    Mao, Jiafa
    Liu, Xiaohui
    NEUROCOMPUTING, 2022, 489 : 309 - 322
  • [4] Effective deep learning-based multi-modal retrieval
    Wang, Wei
    Yang, Xiaoyan
    Ooi, Beng Chin
    Zhang, Dongxiang
    Zhuang, Yueting
    VLDB JOURNAL, 2016, 25 (01): : 79 - 101
  • [5] Effective deep learning-based multi-modal retrieval
    Wei Wang
    Xiaoyan Yang
    Beng Chin Ooi
    Dongxiang Zhang
    Yueting Zhuang
    The VLDB Journal, 2016, 25 : 79 - 101
  • [6] Reinforcement Learning for Multi-Neighborhood Local Search in Combinatorial Optimization
    Ceschia, Sara
    Di Gaspero, Luca
    Rosati, Roberto Maria
    Schaerf, Andrea
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 206 - 221
  • [7] Applying deep learning-based multi-modal for detection of coronavirus
    Rani, Geeta
    Oza, Meet Ganpatlal
    Dhaka, Vijaypal Singh
    Pradhan, Nitesh
    Verma, Sahil
    Rodrigues, Joel J. P. C.
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1251 - 1262
  • [8] Multi-operator opposition-based learning with the neighborhood structure for numerical optimization problems and its applications
    Li, Jiahang
    Gao, Liang
    Li, Xinyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [9] Applying deep learning-based multi-modal for detection of coronavirus
    Geeta Rani
    Meet Ganpatlal Oza
    Vijaypal Singh Dhaka
    Nitesh Pradhan
    Sahil Verma
    Joel J. P. C. Rodrigues
    Multimedia Systems, 2022, 28 : 1251 - 1262
  • [10] Learning-Based Confidence Estimation for Multi-modal Classifier Fusion
    Nadeem, Uzair
    Bennamoun, Mohammed
    Sohel, Ferdous
    Togneri, Roberto
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 299 - 312