Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle

被引:2
|
作者
Zhu, Ligang [1 ,2 ]
Wang, Jin [3 ,4 ]
机构
[1] Jilin Univ, Coll Phys, Changchun 130021, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
[3] Univ Chinese Acad Sci, Wenzhou Inst, Ctr Theoret Interdisciplinary Sci, Wenzhou 325001, Peoples R China
[4] SUNY Stony Brook, Dept Chem & Phys & Astron, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金;
关键词
cell cycle; landscape-flux; nonequilibrium thermodynamics; single-cell transcriptome; REGULATORY NETWORK INFERENCE; GENE-EXPRESSION; NOISE; OSCILLATIONS; RESISTANCE; DYNAMICS; CANCER;
D O I
10.1002/advs.202308879
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis. Single-cell high-throughput sequencing technology brings a lot of data, while statistical physics offers the potential for data analysis. A general framework is provided for combining the landscape-flux theory and single-cell high-through sequencing data for understanding the underlying mechanisms of the cell cycle by learning the cell state force field based on discrete RNA velocity from the single-cell transcriptome sequencing. image
引用
收藏
页数:19
相关论文
共 50 条
  • [1] The landscape of cell-cell communication through single-cell transcriptomics
    Almet, Axel A.
    Cang, Zixuan
    Jin, Suoqin
    Nie, Qing
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 12 - 23
  • [2] The current landscape of single-cell transcriptomics for cancer immunotherapy
    Guruprasad, Puneeth
    Lee, Yong Gu
    Kim, Ki Hyun
    Ruella, Marco
    JOURNAL OF EXPERIMENTAL MEDICINE, 2021, 218 (01):
  • [3] Single-cell transcriptomics uncovers cellular architecture and developmental trajectories in hepatoblastoma
    Huang, Hongting
    Wu, Liang
    Lu, Li
    Zhang, Zijie
    Qiu, Bijun
    Mo, Jialin
    Luo, Yi
    Xi, Zhifeng
    Feng, Mingxuan
    Wan, Ping
    Zhu, Jianjun
    Yu, Dingye
    Wu, Wei
    Tan, Kezhe
    Liu, Jiangbin
    Sheng, Qingfeng
    Xu, Ting
    Huang, Jinyan
    Lv, Zhibao
    Tang, Yujie
    Xia, Qiang
    HEPATOLOGY, 2023, 77 (06) : 1911 - 1928
  • [4] Unravelling the landscape of skin cancer through single-cell transcriptomics
    Srivastava, Ankit
    Bencomo, Tomas
    Das, Ishani
    Lee, Carolyn S.
    TRANSLATIONAL ONCOLOGY, 2023, 27
  • [5] Complement Landscape of the Mouse Retina Based on Single-cell Transcriptomics
    Agarwal, Divyansh
    Li, Mingyao
    Zhang, Nancy
    Stambolian, Dwight
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [6] Single-cell transcriptomics reveals tumor landscape in ovarian carcinosarcoma
    Xu, Junfen
    Tu, Mengyan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2024, 25 (08): : 686 - 699
  • [7] Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis
    Dobie, Ross
    Wilson-Kanamori, John R.
    Henderson, Beth E. P.
    Smith, James R.
    Matchett, Kylie P.
    Portman, Jordan R.
    Wallenborg, Karolina
    Picelli, Simone
    Zagorska, Anna
    Pendem, Swetha V.
    Hudson, Thomas E.
    Wu, Minnie M.
    Budas, Grant R.
    Breckenridge, David G.
    Harrison, Ewen M.
    Mole, Damian J.
    Wigmore, Stephen J.
    Ramachandran, Prakash
    Ponting, Chris P.
    Teichmann, Sarah A.
    Marioni, John C.
    Henderson, Neil C.
    CELL REPORTS, 2019, 29 (07): : 1832 - +
  • [8] Elucidating memory in the brain via single-cell transcriptomics
    Sullivan, Kaitlin E.
    Kendrick, Rennie M.
    Cembrowski, Mark S.
    JOURNAL OF NEUROCHEMISTRY, 2021, 157 (04) : 982 - 992
  • [9] Single-cell transcriptomics uncovers cellular and molecular determinants of tissue myeloid cell heterogeneity in homeostasis and cancer
    Barbiera, G.
    Genua, M.
    Cilenti, F.
    Iodice, D.
    Dugnani, E.
    Citro, A.
    Capotondo, A.
    Milani, M.
    Cantore, A.
    Coltella, N.
    Barbarossa, L.
    Martino, G.
    Piemonti, L.
    Naldini, L.
    Ostuni, R.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 205 - 205
  • [10] Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis
    Weng, Qinjie
    Wang, Jincheng
    Wang, Jiajia
    He, Danyang
    Cheng, Zuolin
    Zhang, Feng
    Verma, Ravinder
    Xu, Lingli
    Dong, Xinran
    Liao, Yunfei
    He, Xuelian
    Potter, Andrew
    Zhang, Liguo
    Zhao, Chuntao
    Xin, Mei
    Zhou, Qian
    Aronow, Bruce J.
    Blackshear, Perry J.
    Rich, Jeremy N.
    He, Qiaojun
    Zhou, Wenhao
    Suva, Mario L.
    Waclaw, Ronald R.
    Potter, S. Steven
    Yu, Guoqiang
    Lu, Q. Richard
    CELL STEM CELL, 2019, 24 (05) : 707 - +