On the exact region determined by Spearman's rho and Spearman's footrule
被引:7
|
作者:
Bukovsek, Damjana Kokol
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Bukovsek, Damjana Kokol
[1
,2
]
Stopar, Nik
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Civil & Geodet Engn, Ljubljana, SloveniaUniv Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Stopar, Nik
[2
,3
]
机构:
[1] Univ Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Ljubljana, Slovenia
We determine the lower bound for possible values of Spearman's rho of a bivariate copula given that the value of its Spearman's footrule is known and show that this bound is always attained. We also give an estimate for the exact upper bound and prove that the estimate is exact for some but not all values of Spearman's footrule. Nevertheless, we show that the estimate is quite tight. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机构:
Univ Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Bukovsek, Damjana Kokol
Kosir, Tomaz
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Jadranska Ulica 19, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Kosir, Tomaz
Mojskerc, Blaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Sch Econ & Business, Ljubljana, Slovenia
Mojskerc, Blaz
Omladic, Matjaz
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Sch Econ & Business, Ljubljana, Slovenia