Perfect Isolate Domination in Graphs

被引:2
|
作者
Armada, Cris L. [1 ,3 ]
Hamja, Jamil J. [2 ]
机构
[1] Cebu Normal Univ, Coll Arts & Sci, Math Dept, Cebu, Philippines
[2] MSU Tawi Tawi Coll Technol & Oceanog, Off Vice Chancellor Acad Affairs, Tawi Tawi 7500, Philippines
[3] Cebu Normal Univ, Ctr Res & Dev, Cebu, Philippines
来源
关键词
Perfect domination; isolate domination; perfect isolate domination;
D O I
10.29020/nybg.ejpam.v16i2.4760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V (G), E(G)) be a simple connected graph. A set S subset of V (G) is said to be a perfect isolate dominating set of G if S is a perfect dominating set and an isolate dominating set of G. The minimum cardinality of a perfect isolate dominating set of G is called perfect isolate domination number, and is denoted by gamma p0(G). A perfect isolate dominating set S with |S| = gamma p0(G) is said to be gamma p0-set. In this paper, the author gives a characterization of perfect isolate dominating set of some graphs and graphs obtained from the join, corona and lexicographic product of two graphs. Moreover, the perfect isolate domination number of the forenamed graphs is determined and also, graphs having no perfect isolate dominating set are examined.
引用
收藏
页码:1326 / 1341
页数:16
相关论文
共 50 条
  • [1] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [2] Isolate Roman domination in graphs
    Bakhshesh, Davood
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
  • [3] ISOLATE SEMITOTAL DOMINATION IN GRAPHS
    Aradais, Anuarisa A.
    Laja, Ladznar S.
    Aradais, Alkajim A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 32 : 55 - 62
  • [4] Generalized perfect domination in graphs
    Chaluvaraju, B.
    Vidya, K. A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 292 - 301
  • [5] CLUSTERING AND DOMINATION IN PERFECT GRAPHS
    CORNEIL, DG
    PERL, Y
    DISCRETE APPLIED MATHEMATICS, 1984, 9 (01) : 27 - 39
  • [6] Roman domination perfect graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 167 - 174
  • [7] On perfect Italian domination in graphs
    Paleta, Leonard M.
    Jamil, Ferdinand P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [8] Perfect Graphs for Domination Games
    Bujtas, Csilla
    Irsic, Vesna
    Klavzar, Sandi
    ANNALS OF COMBINATORICS, 2021, 25 (01) : 133 - 152
  • [9] Certified Perfect Domination in Graphs
    Hamja, Jamil J.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2763 - 2774
  • [10] Common domination perfect graphs
    Dettlaff, Magda
    Henning, Michael A.
    Topp, Jerzy
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 253 - 259