Haar null closed and convex sets in separable Banach spaces

被引:1
|
作者
Ravasini, Davide [1 ]
机构
[1] Univ Innsbruck, Inst Matemat, Technikerstr 13, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1112/blms.12716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Haar null sets were introduced by Christensen in 1972 to extend the notion of sets with zero Haar measure to nonlocally compact Polish groups. In 2013, Darji defined a categorical version of Haar null sets, namely Haar meagre sets. The present paper aims to show that, whenever C$C$ is a closed, convex subset of a separable Banach space, C$C$ is Haar null if and only if C$C$ is Haar meagre. We then use this fact to improve a theorem of Matouskova and to solve a conjecture proposed by Esterle, Matheron and Moreau. Finally, we apply the main theorem to find a characterisation of separable Banach lattices whose positive cone is not Haar null.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 50 条