Maximal regularity of parabolic equations associated with a discrete Laplacian

被引:0
|
作者
Bui, The Anh [1 ]
机构
[1] Macquarie Univ, Sch Math & Phys Sci, Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
Discrete Laplacian; Parabolic equation; Maximal regularity; Besov space; SPACES; SEQUENCES;
D O I
10.1016/j.jde.2023.07.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d be the discrete Laplacian defined on Zd by setting df (n ) = d j=1 -[f (n +e j) + f (n - e j)- 2f (n ), n is an element of Zd, where {e j : j = 1, ... , d} is the standard basis for Rd. In this paper, we prove weighted mixed norm estimates and end-point estimates for the maximal regularity of the discrete parabolic equation 1 ut +du = f, t is an element of [0, T ) u(0, center dot) =0, where T is an element of (0, infinity). (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:277 / 303
页数:27
相关论文
共 50 条