Phase transformation of magnetite and goethite nanoparticles controlled by pH: Experimental and simulation study of cuboid magnetic nanoparticles prepared with NaOH

被引:1
|
作者
Harris, R. A. [1 ]
机构
[1] Univ Free State, Dept Phys, Nelson Mandela Ave, ZA-9301 Bloemfontein, South Africa
关键词
Magnetic nanoparticles; Goethite FeOOH; NaOH; Molecular dynamics; pH studies; Co-precipitation; Cubic; Spherical; IRON-OXIDE NANOPARTICLES; OLEIC-ACID; OLEYLAMINE; SURFACE;
D O I
10.1016/j.solidstatesciences.2023.107416
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The phase transformation between magnetite and goethite nanoparticles (NPs) as a function of pH is investigated. This is done via molecular dynamics and by the co-precipitation method. The binding energy (BE) of cuboid and spherical shaped NPs are compared, and it is shown that cuboid shaped NPs are favored above spherical when NaOH is used to control the pH, since these morphologies are more stable. Furthermore, the ratio of excess and desorbed hydroxyls to free protons (i.e., hydrogen ions) is used to qualitatively study the role that pH plays in controlling this phase transformation. Neutral to acidic solutions lead to the formation of stable goethite cuboid NPs whereas basic solutions lead to the formation of magnetite NPs.
引用
收藏
页数:7
相关论文
共 22 条
  • [1] Simulation and experimental study of cuboid and spherical magnetic Fe3O4 nanoparticles prepared with NaOH and NH4OH
    R. A. Harris
    Applied Physics A, 2023, 129
  • [2] Simulation and experimental study of cuboid and spherical magnetic Fe3O4 nanoparticles prepared with NaOH and NH4OH
    Harris, R. A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (12):
  • [3] An experimental investigation of aqueous-phase synthesis of magnetite nanoparticles via mechanochemical reduction of goethite
    Iwasaki, Tomohiro
    Sato, Nami
    Nakamura, Hideya
    Watano, Satoru
    ADVANCED POWDER TECHNOLOGY, 2013, 24 (02) : 482 - 486
  • [4] Surface anisotropy, hysteretic, and magnetic properties of magnetite nanoparticles: A simulation study
    Mazo-Zuluaga, J.
    Restrepo, J.
    Munoz, F.
    Mejia-Lopez, J.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
  • [5] Energy contributions in magnetite nanoparticles: computation of magnetic phase diagram, theory, and simulation
    Mejia-Lopez, J.
    Mazo-Zuluaga, J.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (12) : 7115 - 7125
  • [6] Energy contributions in magnetite nanoparticles: computation of magnetic phase diagram, theory, and simulation
    J. Mejía-López
    J. Mazo-Zuluaga
    Journal of Nanoparticle Research, 2011, 13 : 7115 - 7125
  • [7] Synthesis of various magnetite nanoparticles through simple phase transformation and their shape-dependent magnetic properties
    Choi, Jenam
    Cha, Jinmyung
    Lee, Jin-Kyu
    RSC ADVANCES, 2013, 3 (22) : 8365 - 8371
  • [8] Magnetite nanoparticles as-prepared and dispersed in Copaiba oil: study using magnetic measurements and Mossbauer spectroscopy
    Oshtrakh, Michael I.
    Ushakov, Mikhail V.
    Semenova, Anna S.
    Kellerman, Dina G.
    Sepelak, Vladimir
    Rodriguez, Alfonso F. R.
    Semionkin, Vladimir A.
    Morais, Paulo C.
    HYPERFINE INTERACTIONS, 2013, 219 (1-3): : 19 - 24
  • [9] Magnetite nanoparticles as-prepared and dispersed in Copaiba oil: study using magnetic measurements and Mössbauer spectroscopy
    Michael I. Oshtrakh
    Mikhail V. Ushakov
    Anna S. Semenova
    Dina G. Kellerman
    Vladimir Šepelák
    Alfonso F. R. Rodriguez
    Vladimir A. Semionkin
    Paulo C. Morais
    Hyperfine Interactions, 2013, 219 : 19 - 24
  • [10] Macroporous magnetic poly(styrene-divinylbenzene) nanocomposites prepared via magnetite nanoparticles-stabilized high internal phase emulsions
    Li, Tingting
    Liu, Huarong
    Zeng, Lai
    Yang, Song
    Li, Zichao
    Zhang, Jinde
    Zhou, Xiangtian
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) : 12865 - 12872