Reduced Order Modeling for Parameterized Electromagnetic Simulation Based on Tensor Decomposition

被引:1
|
作者
He, Xiao-Feng [1 ]
Li, Liang [1 ]
Lanteri, Stephane [2 ]
Li, Kun [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Inria ATLANTIS Project Team, F-06902 Sophia Antipolis, France
[3] Southwestern Univ Finance & Econ, Sch Math, Chengdu 610074, Peoples R China
关键词
Electromagnetic simulation; model order reduction; proper orthogonal decomposition; canonical polyadic decomposition; cubic spline interpolation; NEURAL-NETWORKS; SCATTERING;
D O I
10.1109/JMMCT.2023.3301978
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a data-driven surrogate modeling for parameterized electromagnetic simulation. This method extracts a set of reduced basis (RB) functions from full-order solutions through a two-step proper orthogonal decomposition (POD) method. A mapping from the time/parameter to the principal components of the projection coefficients, extracted by canonical polyadic decomposition (CPD), is approximated by a cubic spline interpolation (CSI) approach. The reduced-order model (ROM) is trained in the offline phase, while the RB solution of a new time/parameter value is recovered fast during the online phase. We evaluate the performance of the proposed method with numerical tests for the scattering of a plane wave by a 2-D multi-layer dielectric disk and a 3-D multi-layer dielectric sphere.
引用
收藏
页码:296 / 305
页数:10
相关论文
共 50 条
  • [1] A novel tensor-based modal decomposition method for reduced order modeling and optimal sparse sensor placement
    Zhong, Zhirong
    Hua, Xuanhao
    Zhai, Zhi
    Ma, Meng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 155
  • [2] SIMULATION BASED REDUCED ORDER MODELING USING A CLUSTERING TECHNIQUE
    SINHA, AK
    PAL, J
    COMPUTERS & ELECTRICAL ENGINEERING, 1990, 16 (03) : 159 - 169
  • [3] Reduced-Order Modeling Based on Hybrid Snapshot Simulation
    Bai, Feng
    Wang, Yi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (01)
  • [4] Non-Intrusive Reduced-Order Modeling of Parameterized Electromagnetic Scattering Problems using Cubic Spline Interpolation
    Kun Li
    Ting-Zhu Huang
    Liang Li
    Stéphane Lanteri
    Journal of Scientific Computing, 2021, 87
  • [5] Non-Intrusive Reduced-Order Modeling of Parameterized Electromagnetic Scattering Problems using Cubic Spline Interpolation
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [6] Non-intrusive reduced-order modeling of parameterized electromagnetic scattering problems using cubic spline interpolation
    Li, Liang
    Li, Kun
    Huang, Ting-Zhu
    Lanteri, Stephane
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [7] Parameterized reduced order modeling of misaligned stacked disks rotor assemblies
    Ganine, Vladislav
    Laxalde, Denis
    Michalska, Hannah
    Pierre, Christophe
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (03) : 445 - 460
  • [8] An efficient and robust method for parameterized nonintrusive reduced-order modeling
    Kostorz, Wawrzyniec J.
    Muggeridge, Ann H.
    Jackson, Matthew D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (20) : 4674 - 4688
  • [9] A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    Xu, Li
    Li, Bin
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (01) : 242 - 254
  • [10] Mixed Proper Orthogonal Decomposition with Harmonic Approximation for Parameterized Order Reduction of Electromagnetic Models
    Torchio, Riccardo
    Zanco, Alessandro
    Lucchini, Francesco
    Alotto, Piergiorgio
    Grivet-Talocia, Stefano
    2022 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE 2022), 2022, : 349 - 354