External-attention dual-modality fusion network for RGBT tracking

被引:6
|
作者
Yan, Kaixiang [1 ]
Mei, Jiatian [1 ]
Zhou, Dongming [1 ]
Zhou, Lifen [1 ,2 ]
机构
[1] Yunnan Univ, Sch Informat & Engn, Kunming 650500, Yunnan, Peoples R China
[2] QuJing Normal Univ, Coll Informat Engn, Qujing 530300, Yunnan, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2023年 / 79卷 / 15期
基金
中国国家自然科学基金;
关键词
RGBT tracking; Convolution neural network; External attention mechanism; OBJECT TRACKING;
D O I
10.1007/s11227-023-05329-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the unique complementarity of RGB and thermal (RGBT) images, RGBT tracking has gradually become a crucial area of research. To achieve robust tracking performance, how to leverage both local and global information becomes a crucial issue for the RGBT tracking. Inspired by external-attention mechanism, we designed an external-attention dual-modality fusion network (EDFNet) equipped with external-attention guided module (EGM). The EGM based on two external memorized units generates the external attention maps that help reallocate the weights according to the correlations. To avoid feature deterioration, EDFNet introduces shortcuts to make detours and adaptively fuses the features from detours and external attention with adaptive weights. Furthermore, considering the difference of RGBT image, we design an asymmetric feature enhancement approach consisting of detailed information guidance (DiG) and structural information enhancement. DiG aims to optimize the detailed and textural features of RGB feature by axial detail optimization. SiE leverages the accumulated-addtion feature to enhance the structural features. Simultaneously, we deploy a loss function named partial weight enhanced loss in EDFNet to accommodate this new architecture. The evaluation results based on RGBT234 and GTOT, respectively, validate that EDFNet achieves a better tracking performance compared with the other trackers.
引用
收藏
页码:17020 / 17041
页数:22
相关论文
共 50 条
  • [1] External-attention dual-modality fusion network for RGBT tracking
    Kaixiang Yan
    Jiatian Mei
    Dongming Zhou
    Lifen Zhou
    The Journal of Supercomputing, 2023, 79 : 17020 - 17041
  • [2] Dual-Modality Space-Time Memory Network for RGBT Tracking
    Zhang, Fan
    Peng, Hanwei
    Yu, Lingli
    Zhao, Yuqian
    Chen, Baifan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] QueryTrack: Joint-Modality Query Fusion Network for RGBT Tracking
    Fan, Huijie
    Yu, Zhencheng
    Wang, Qiang
    Fan, Baojie
    Tang, Yandong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 3187 - 3199
  • [4] EAFF-Net: Efficient attention feature fusion network for dual-modality pedestrian detection
    Shen, Ying
    Xie, Xiaoyang
    Wu, Jing
    Chen, Liqiong
    Huang, Feng
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [5] RGBT dual-modal Siamese tracking network with feature fusion
    Shen Y.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (03):
  • [6] Fusion Tree Network for RGBT Tracking
    Cheng, Zhiyuan
    Lu, Andong
    Zhang, Zhang
    Li, Chenglong
    Wang, Liang
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [7] RGBT Tracking by Trident Fusion Network
    Zhu, Yabin
    Li, Chenglong
    Tang, Jin
    Luo, Bin
    Wang, Liang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 579 - 592
  • [8] Dynamic Fusion Network for RGBT Tracking
    Peng, Jingchao
    Zhao, Haitao
    Hu, Zhengwei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3822 - 3832
  • [9] SiamCAF: Complementary Attention Fusion-Based Siamese Network for RGBT Tracking
    Xue, Yingjian
    Zhang, Jianwei
    Lin, Zhoujin
    Li, Chenglong
    Huo, Bihan
    Zhang, Yan
    REMOTE SENSING, 2023, 15 (13)
  • [10] Deep Triply Attention Network for RGBT Tracking
    Yang, Rui
    Wang, Xiao
    Zhu, Yabin
    Tang, Jin
    COGNITIVE COMPUTATION, 2023, 15 (06) : 1934 - 1946