Numerical Analysis of the Nonuniform Fast L1 Formula for Nonlinear Time-Space Fractional Parabolic Equations

被引:5
|
作者
Xing, Zhiyong [1 ]
Wen, Liping [2 ]
机构
[1] Shaoyang Univ, Dept Math, Shaoyang 422000, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
关键词
Nonlinear time-space fractional parabolic equation; Fast L1 formula; Energy dissipation law; Weak singularity; Stability and convergence; FINITE-DIFFERENCE METHOD; GRADED MESHES; ALLEN-CAHN; SCHEME; STEPS;
D O I
10.1007/s10915-023-02186-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Basing on the nonuniform fast L1 formula, an efficient numerical scheme is proposed for nonlinear time-space fractional parabolic equations. The stability and convergence of the numerical scheme are rigorously established. The discrete energy dissipation property of the numerical scheme based on graded temporal mesh is given. Finally, several numerical experiments are provided to verify the theoretical results.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Numerical Analysis of the Nonuniform Fast L1 Formula for Nonlinear Time–Space Fractional Parabolic Equations
    Zhiyong Xing
    Liping Wen
    Journal of Scientific Computing, 2023, 95
  • [2] A fast L1 formula on tanh meshes for time fractional Burgers equations
    Xing, Zhiyong
    Sun, Wenbing
    Zhu, Xiaogang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [3] Convergence analysis of an L1-continuous Galerkin method for nonlinear time-space fractional Schrodinger equations
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (07) : 1420 - 1437
  • [4] Parallel algorithms for nonlinear time-space fractional parabolic PDEs
    Biala, T. A.
    Khaliq, A. Q. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 135 - 154
  • [5] Numerical Schemes for Time-Space Fractional Vibration Equations
    Zhang, Jingna
    Aleroev, Temirkhan S.
    Tang, Yifa
    Huang, Jianfei
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (04) : 806 - 826
  • [6] Numerical Approximation of Space-Time Fractional Parabolic Equations
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 679 - 705
  • [7] ERROR ESTIMATE OF THE NONUNIFORM L1 TYPE FORMULA FOR THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Sun, Hong
    Chen, Yanping
    Zhao, Xuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1707 - 1725
  • [8] Numerical analysis of nonlinear parabolic problems with variable exponent and L1 data
    Ouaro, Stanislas
    Rabo, Noufou
    Traore, Urbain
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (02): : 187 - 209
  • [9] Bifurcation analysis and exact solutions for a class of generalized time-space fractional nonlinear Schrodinger equations
    Hong, Baojian
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14377 - 14394
  • [10] Linearized fast time-stepping schemes for time-space fractional Schrodinger equations
    Yuan, Wanqiu
    Zhang, Chengjian
    Li, Dongfang
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 454