Ultra-low frequency vibration isolation of a novel click-beetle-inspired structure with large quasi-zero stiffness region

被引:43
|
作者
Ling, Peng [1 ]
Miao, Lunlun [1 ]
Ye, Bingliang [1 ]
You, Jin [2 ]
Zhang, Wenming [3 ]
Yan, Bo [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
[2] Beijing Inst Spacecraft Syst Engn, Beijing 100094, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Bio-inspired structure; Quasi-zero-stiffness; Nonlinear vibration isolation; Low-frequency; NONLINEAR STIFFNESS; DESIGN;
D O I
10.1016/j.jsv.2023.117756
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Inspired by the three postures of a click beetle, a novel passive click-beetle-inspired structure (CBIS) with variable asymmetric stiffness characteristics is proposed and systematically investi-gated for stiffness tunning and low-frequency vibration isolation. The main structure of CBIS is consisted of three rods and two springs but the geometrical nonlinearity and stiffness properties are abundant. Based on the Lagrange principle, the stiffness properties of CBIS is analyzed comprehensively for the unbending posture, down-bending posture and up-bending posture, respectively. The corresponding displacement transmissibility derived with the harmonic balance method. The hardening and softening stiffness phenomenon may occur by tuning geometric pa-rameters. The stiffness can be tuned easily among negative, quasi-zero, zero, small positive by the initial assembly angle, length ratio and linear stiffness ratio. The zero stiffness (ZS) or quasi-zero stiffness (QZS) region can be extremely huge under some special parameters, which can broaden the working range of CBIS and benefit to large-deflection vibration isolation. The peak trans-missibility can be reduced to 7 dB or even 0 dB and the resonant frequency can be smaller than 2 Hz, which is conductive to ultra-low frequency vibration isolation. The proposed CBIS opens a new route towards tunning asymmetric stiffness for low frequency vibration isolation.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] An Origami-Inspired Quasi-zero Stiffness Structure for Low-Frequency Vibration Isolation
    Zeng, Peng
    Yang, Yuanhan
    Huang, Long
    Yin, Lairong
    Liu, Bei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (04) : 1463 - 1475
  • [2] An Origami-Inspired Quasi-zero Stiffness Structure for Low-Frequency Vibration Isolation
    Peng Zeng
    Yuanhan Yang
    Long Huang
    Lairong Yin
    Bei Liu
    Journal of Vibration Engineering & Technologies, 2023, 11 : 1463 - 1475
  • [3] Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation
    Liu, Ji
    Wang, Yanhui
    Yang, Shaoqiong
    Sun, Tongshuai
    Yang, Ming
    Niu, Wendong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [4] Origami-inspire quasi-zero stiffness structure for flexible low-frequency vibration isolation
    Yu, Kangfan
    Chen, Yunwei
    Yu, Chuanyun
    Li, Pan
    Ren, Zihao
    Zhang, Jianrun
    Lu, Xi
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 276
  • [5] Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation
    Sadeghi, Sahand
    Li, Suyi
    SMART MATERIALS AND STRUCTURES, 2019, 28 (06)
  • [6] Dynamic research on a low-frequency vibration isolation system of quasi-zero stiffness
    Jurevicius, M.
    Vekteris, V.
    Viselga, G.
    Turla, V
    Kilikevicius, A.
    Iljin, I.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2019, 38 (02) : 684 - 691
  • [7] Harnessing the Quasi-Zero Stiffness from Fluidic Origami for Low Frequency Vibration Isolation
    Sadeghi, Sahand
    Li, Suyi
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2017, VOL 2, 2017,
  • [8] Origami-inspired quasi-zero stiffness metamaterials for low-frequency multi-direction vibration isolation
    Liu, Wenlong
    Wu, Lingling
    Sun, Jingbo
    Zhou, Ji
    APPLIED PHYSICS LETTERS, 2023, 123 (08)
  • [9] Limb-inspired quasi-zero stiffness structure for ultralow-frequency vibration attenuation
    Zhou, Wenxi
    Li, Yingli
    Zhou, Jiaxi
    Peng, Yong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 274
  • [10] Design and analysis of a novel quasi-zero stiffness vibration isolation system
    Sun, J.-G., 1600, Chinese Vibration Engineering Society (33):