Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration

被引:18
|
作者
Shanto, Prayas Chakma [1 ]
Park, Seongsu [1 ]
Park, Myeongki [1 ]
Lee, Byong-Taek [1 ,2 ]
机构
[1] Soonchunhyang Univ, Coll Med, Dept Regenerat Med, Cheonan 31151, South Korea
[2] Soonchunhyang Univ, Inst Tissue Regenerat, Cheonan 31151, South Korea
来源
BIOMATERIALS ADVANCES | 2023年 / 145卷
基金
新加坡国家研究基金会;
关键词
3D printing; Decellularized extracellular matrix; Oxidized cellulose nanofiber; Tissue engineering; Cartilage regeneration; EXTRACELLULAR-MATRIX; CHONDROGENIC DIFFERENTIATION; COMPOSITE HYDROGEL; HYBRID SCAFFOLD; BONE-MATRIX; CELLULOSE; CHONDROCYTES; ALGINATE; GROWTH; CELLS;
D O I
10.1016/j.bioadv.2022.213239
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Cartilage damage is the leading cause of osteoarthritis (OA), especially in an aging society. Mimicking the native cartilage microenvironment for chondrogenic differentiation along with constructing a stable and controlled architectural scaffold is considerably challenging. In this study, three-dimensional (3D) printed scaffolds using tempo-oxidized cellulose nanofiber (TOCN), decellularized extracellular matrix (dECM), and sodium alginate (SA) were fabricated for cartilage tissue regeneration. We prepared three groups (dECM80, dECM50, dECM20) of 3D printable hydrogels with different ratios of TOCN and dECM where SA concentration remained the same. Two-step crosslinking was performed with CaCl2 solution to achieve the highly stable 3D printed scaffolds. Finally, the fundamental physical characterizations showed that increasing the ratio of TOCN with dECM significantly improved the viscoelastic behaviour, stability, mechanical properties, and printability of the scaffolds. Based on the results, the 3D printed dECM50 scaffolds with controlled and identical pore sizes increased the whole-layer integrity and nutrient supply in each layer of the scaffold. Furthermore, evaluation of in vitro and in vivo biocompatibility of the scaffolds with rBMSCs indicated that dECM50 scaffolds provided a suitable microenvironment for cell proliferation and promoted chondrogenesis by remarkably expressing the cartilagespecific markers. This study demonstrates that 3D printed dECM50 scaffolds provide a favourable and promising microenvironment for cartilage tissue regeneration.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] 3D printed hydrogel for articular cartilage regeneration
    Yang, Xue
    Li, Shuai
    Ren, Ya
    Qiang, Lei
    Liu, Yihao
    Wang, Jinwu
    Dai, Kerong
    COMPOSITES PART B-ENGINEERING, 2022, 237
  • [2] Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration
    Jang, Eun Jo
    Patel, Rajkumar
    Sankpal, Narendra V.
    Bouchard, Louis S.
    Patel, Madhumita
    EUROPEAN POLYMER JOURNAL, 2024, 202
  • [3] 3D Printed Alginate Hydrogel Scaffolds in Regenerative Medicine Techniques
    Hendricks, T.
    Cook, A.
    Baba, T.
    Dodge, C.
    Dangerfield, J.
    Rosqvist, S.
    Larsen, K.
    TISSUE ENGINEERING PART A, 2015, 21 : S248 - S248
  • [4] 3D Printed Gene-Activated Sodium Alginate Hydrogel Scaffolds
    Khvorostina, Maria A.
    Mironov, Anton, V
    Nedorubova, Irina A.
    Bukharova, Tatiana B.
    Vasilyev, Andrey V.
    Goldshtein, Dmitry, V
    Komlev, Vladimir S.
    Popov, Vladimir K.
    GELS, 2022, 8 (07)
  • [5] Biofabrication and evaluation of 3D printed and cast PCL / collagen-alginate hydrogel tubular scaffolds for urethral tissue engineering
    Setareyi, Rasool
    Hatamian-Zarmi, Ashrafalsadat
    Mokhtari-Hosseini, Zahra-Beagom
    Kianirad, Soheil
    Heidarian, Ehsan
    Abbasi-Malati, Samira
    Feizollahi, Narjes
    Naji, Mohammad
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 307
  • [6] Microstructural and biological characterization of 3D printed PEEK scaffolds coated with alginate/CNT for bone regeneration applications
    Afshin Fatemi
    Farid Reza Biglari
    Discover Mechanical Engineering, 3 (1):
  • [7] Powder Coating 3D Printed Polycaprolactone Scaffolds for Tissue Regeneration
    Gruber, S. M.
    de Alarcon, A.
    van Aalst, J.
    Gordon, C. B.
    Lin, C. J.
    TISSUE ENGINEERING PART A, 2016, 22 : S101 - S101
  • [8] HIERARCHICALLY MINERALIZING 3D PRINTED SCAFFOLDS FOR HARD TISSUE REGENERATION
    Hasan, Abshar
    Marshall, Karen
    Wojciechowski, Jonathan
    Elsharkawy, Sherif
    Eglin, David
    Oreffo, Richard
    Stevens, Molly
    Mata, Alvaro
    TISSUE ENGINEERING PART A, 2022, 28 : S350 - S351
  • [9] 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration
    Koo, YoungWon
    Choi, Eun-Ji
    Lee, JaeYoon
    Kim, Han-Jun
    Kim, GeunHyung
    Do, Sun Hee
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 66 : 343 - 355
  • [10] 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair
    Liu, Chun
    Qin, Wen
    Wang, Yan
    Ma, Jiayi
    Liu, Jun
    Wu, Siyu
    Zhao, Hongbin
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2021, 16 : 8417 - 8432