Investigating zirconium alloy corrosion with advanced experimental techniques: A review

被引:32
|
作者
Kautz, Elizabeth [1 ,2 ]
Gwalani, Bharat [3 ]
Yu, Zefeng [4 ]
Varga, Tamas [5 ]
Geelhood, Kenneth [6 ]
Devaraj, Arun [7 ]
Senor, David [2 ]
机构
[1] North Carolina State Univ, Nucl Engn Dept, Raleigh, NC 27695 USA
[2] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[3] North Carolina State Univ, Mat Sci & Engn Dept, Raleigh, NC USA
[4] Univ Wisconsin Madison, Mat Sci & Engn Dept, Madison, WI USA
[5] Pacific Northwest Natl Lab, Environm & Biol Sci Directorate, Richland, WA USA
[6] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA USA
[7] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA USA
关键词
Zirconium; Oxidation; Corrosion behavior; Hydrogen pick-up; Oxide; metal interface; ZrO2; TRANSMISSION ELECTRON-MICROSCOPY; ATOM-PROBE TOMOGRAPHY; IN-SITU; OXIDE-FILMS; METAL/OXIDE INTERFACE; OXIDATION BEHAVIOR; AUTOCLAVE CORROSION; 3D CHARACTERIZATION; HYDROGEN UPTAKE; WATER-VAPOR;
D O I
10.1016/j.jnucmat.2023.154586
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zirconium-based alloys (Zr alloys) are key materials in the nuclear industry due to their thermal stability, mechanical durability, and low thermal neutron cross section. However, corrosion can significantly impact their integrity and lifespan. The corrosion of Zr alloys involves dynamic processes such as phase transformations, element redistributions, stress accumulation, volumetric changes, and formation of defects in oxide films. Recent advancements in experimental techniques have improved our understanding of these phenomena and our ability to predict material behavior in extreme environments. This review focuses on the knowledge gained through the application of advanced experimental techniques to enhance the understanding of zirconium alloy oxidation and hydrogen pick-up in nuclear environments.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The role of hydrogen in zirconium alloy corrosion
    Ensor, B.
    Lucente, A. M.
    Frederick, M. J.
    Sutliff, J.
    Motta, A. T.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 496 : 301 - 312
  • [2] Investigating the thermal stability of irradiation-induced damage in a zirconium alloy with novel in situ techniques
    Topping, M.
    Ungar, T.
    Race, C. P.
    Harte, A.
    Garner, A.
    Baxter, F.
    Dumbill, S.
    Frankel, P.
    Preuss, M.
    ACTA MATERIALIA, 2018, 145 : 255 - 263
  • [3] PITTING CORROSION ON ZIRCONIUM - A REVIEW
    KNITTEL, DR
    BRONSON, A
    CORROSION, 1984, 40 (01) : 9 - 14
  • [4] DEPOSITION OF CORROSION PRODUCTS OF ZIRCONIUM ALLOY SURFACE
    GERASIMO.VV
    SHCHAPOV, GA
    VARNACHE.LG
    SAENKO, GP
    GROMOVA, AI
    ILYUKHIN, AS
    BELOUS, VN
    MOROZOVA, IK
    ATOMNAYA ENERGIYA, 1972, 32 (01): : 15 - +
  • [5] Tribological and corrosion behavior of hydrided zirconium alloy
    Kumar, Bharat
    Kumar, Deepak
    Chaudhry, Vijay
    TRIBOLOGY INTERNATIONAL, 2024, 195
  • [6] Irradiation effects on corrosion of zirconium alloy claddings
    CEA-Grenoble DTP/SECC, Grenoble, France
    Journal of Nuclear Materials, 1997, 248 : 268 - 274
  • [7] Irradiation effects on corrosion of zirconium alloy claddings
    Lefebvre, F
    Lemaignan, C
    JOURNAL OF NUCLEAR MATERIALS, 1997, 248 : 268 - 274
  • [8] Understanding the high-temperature corrosion behavior of zirconium alloy as cladding tubes: a review
    Tang, Yan
    Liao, Jingjing
    Yun, Di
    FRONTIERS IN MATERIALS, 2024, 11
  • [9] Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy
    Lacroix, E.
    Motta, A. T.
    Almer, J. D.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 509 : 162 - 167
  • [10] REVIEW OF NEW EXPERIMENTAL-TECHNIQUES FOR INVESTIGATING RANDOM SEQUENTIAL ADSORPTION
    RAMSDEN, JJ
    JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) : 853 - 877