Charged Particles Transverse Momentum and Pseudorapidity Distribution in Hadronic Collisions at LHC Energies

被引:5
|
作者
Ajaz, Muhammad [1 ]
Haj Ismail, Abd Al Karim [2 ,3 ]
Ullah Mian, Mateen [4 ]
Khan, Rashid [1 ]
Shehzadi, Ramoona [5 ]
Adil Khan, Muhammad [4 ]
AbdelKader, Atef [2 ,3 ]
Waqas, Muhammad [6 ]
Dawi, Elmuez A. [2 ,3 ]
Tabassam, Uzma [7 ]
机构
[1] Abdul Wali Khan Univ Mardan, Dept Phys, Mardan 23200, Pakistan
[2] Ajman Univ, Coll Humanities & Sci, POB 346, Ajman, U Arab Emirates
[3] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, POB 346, Ajman, U Arab Emirates
[4] Islamia Coll Peshawar, Dept Phys, Peshawar 25120, Pakistan
[5] Univ Punjab, Dept Phys, Lahore 54590, Pakistan
[6] Hubei Univ Automot Technol, Sch Math Phys & Optoelect Engn, Shiyan 442002, Peoples R China
[7] COMSATS Univ Islamabad, Dept Phys, Islamabad 44000, Pakistan
关键词
Monte-Carlo models; transverse momentum; pseudorapidity; statistical models; effective temperature; EVENT GENERATORS; DIAGRAM; QCD;
D O I
10.3390/e25030452
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analysis of the pseudorapidity eta and transverse momentum pT distributions of charged hadrons in pp collisions for the kinematic range of 0 < pT < 4 GeV/c and vertical bar eta vertical bar < 2.4 at 0.9, 2.36, and 7 TeV. Charged particles are produced in pp collision using several Monte Carlo event generators (Pythia Simple, Vincia, Dire showers, Sibyll2.3d, QGSJETII-04, EPOS-LHC) and compared with CMS data at LHC. It is observed that the Simple parton showers can explain the CMS data very well for p(T) > 1 GeV/c at 0.9 and 2.36 TeV within the experimental errors, while Dire overshoots and Vicia undershoots the data by 50% each. At 7 TeV, the Dire module presents a good prediction, whereas the Simple and Vincia modules underestimate the data within 30% and 50%. Comparing the Simple module of the Pythia model and the predictions of the CRMC models with the experimental data shows that at 0.9 TeV, EPOS-LHC has better results than the others. At 2.36 GeV, the cosmic rays Monte Carlo (CRMC) models have better prediction than the Simple module of Pythia at low p(T), while QGSJETII-04 predicts well at high p(T). QGSJETII-04 and EPOS-LHC have closer results than the Pythia-Simple and Sibyll2.3d at 7 TeV. In the case of the pseudorapidity distributions, only the Pythia-Simple reproduced the experimental measurements at all energies. The Dire module overestimates, while Vincia underestimates the data in decreasing order of discrepancy (20%, 12%, 5%) with energy. All CRMC models underestimate the data over the entire eta range at all energies by 20%. The angular ordering of partons and the parton fragmentation could be possible reasons for this deviation. Furthermore, we used the two-component standard distribution to fit the pT spectra to the experimental data and extracted the effective temperature (T-eff) and the multiplicity parameter (N-0). It is observed that T-eff increases with the increase in the center of mass energy. The fit yielded 0.20368 +/- 0.01, 0.22348 +/- 0.011, and 0.24128 +/- 0.012 GeV for 0.9, 2.36, and 7 TeV, respectively. This shows that the system at higher energies freezes out earlier than lower ones because they quickly attain the equilibrium state.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Transverse momentum distribution of primary charged particles in p-Pb interactions at forward pseudorapidity at LHC energies
    Ali, Y.
    Jan, N. Ullah
    Tabassam, U.
    Suleymanov, M.
    Bhatti, A. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2017, 26 (04):
  • [2] Pseudorapidity Distributions of Charged Particles Produced in pp Collisions at the CERN LHC Energies
    Sun, Jian-Xin
    Tian, Cai-Xing
    Wang, Er-Qin
    Liu, Fu-Hu
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (05) : 3138 - 3140
  • [3] Distributions of the Transverse Momentum and Pseudorapidity of Charged Particles in pp Collisions at 0.9 TeV
    Q. Ali
    Y. Ali
    M. Haseeb
    M. Ajaz
    JETP Letters, 2019, 109 : 495 - 498
  • [4] Distributions of the Transverse Momentum and Pseudorapidity of Charged Particles in pp Collisions at 0.9 TeV
    Ali, Q.
    Ali, Y.
    Haseeb, M.
    Ajaz, M.
    JETP LETTERS, 2019, 109 (08) : 495 - 498
  • [5] Pseudorapidity dependence of the transverse momentum distribution of charged particles in pp collisions at 0.9, 2.36, and 7 TeV
    Waqas, M.
    Peng, G. X.
    Ajaz, M.
    Khubrani, A. M.
    Dawi, E. A.
    Khan, M. Adil
    Tawfik, A.
    RESULTS IN PHYSICS, 2022, 42
  • [6] A Description of the Transverse Momentum Distributions of Charged Particles Produced in Heavy Ion Collisions at RHIC and LHC Energies
    Hui, Jia-Qi
    Jiang, Zhi-Jin
    Xu, Dong-Fang
    ADVANCES IN HIGH ENERGY PHYSICS, 2018, 2018
  • [7] Pseudorapidity, transverse momentum and multiplicity distributions of charged particles in pp collisions at 13 TeV
    Waqas, M.
    Peng, G. X.
    Khubrani, A. M.
    Ajaz, M.
    Tabassam, U.
    Yang, Pei-Pin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (05):
  • [8] Pseudorapidity, transverse momentum and multiplicity distributions of charged particles in pp collisions at 13 TeV
    M. Waqas
    G. X. Peng
    A. M. Khubrani
    M. Ajaz
    U. Tabassam
    Pei-Pin Yang
    The European Physical Journal Plus, 138
  • [9] Pseudorapidity distributions of produced charged hadrons in pp collisions at RHIC and LHC energies
    Wolschin, G.
    EPL, 2011, 95 (06)
  • [10] Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √s=5.02 and 13 TeV
    Acharya, S.
    Adamova, D.
    Adler, A.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Ahuja, I.
    Akindinov, A.
    Al-Turany, M.
    Aleksandrov, D.
    Alessandro, B.
    Alfanda, H. M.
    Molina, R. Alfaro
    Ali, B.
    Alici, A.
    Alizadehvandchali, N.
    Alkin, A.
    Alme, J.
    Alocco, G.
    Alt, T.
    Altsybeev, I.
    Anaam, M. N.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Antinori, F.
    Antonioli, P.
    Apadula, N.
    Aphecetche, L.
    Appelshauser, H.
    Arata, C.
    Arcelli, S.
    Aresti, M.
    Arnaldi, R.
    Arneiro, J. G. M. C. A.
    Arsene, I. C.
    Arslandok, M.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Bae, J.
    Baek, Y. W.
    Bai, X.
    Bailhache, R.
    Bailung, Y.
    Balbino, A.
    PHYSICAL REVIEW D, 2023, 108 (07)