Experimental and numerical analysis of the thermal performance of pebble solar thermal collector

被引:3
|
作者
Naik, N. Channa Keshava [1 ]
Priya, R. Krishna [2 ]
Agulut, Umit [3 ]
Gurel, Ali Etem [4 ]
Shaik, Saboor [5 ]
Alzaed, Ali Nasser [6 ]
Alwetaishi, Mamdooh [7 ]
Alahmadi, Ahmad Aziz [8 ]
机构
[1] Visvesvaraya Technol Univ, BGS Coll Engn & Technol, Dept Mech Engn, Bengaluru 560086, Karnataka, India
[2] Univ Technol & Appl Sci, Coll Engn & Technol, Engn Dept, Musandam, Oman
[3] Yildiz Tech Univ, Mech Engn Fac, Dept Mech Engn, TR-34349 Istanbul, Turkiye
[4] Duzce Univ, Duzce Vocat Sch, Dept Elect & Energy, TR-81010 Duzce, Turkiye
[5] Vellore Inst Technol, Sch Mech Engn, Vellore 632014, Tamil Nadu, India
[6] Taif Univ, Coll Engn, Dept Architecture Engn, Taif 21944, Saudi Arabia
[7] Taif Univ, Coll Engn, Dept Civil Engn, Taif 21944, Saudi Arabia
[8] Taif Univ, Coll Engn, Dept Elect Engn, Taif 21944, Saudi Arabia
关键词
Pebbles; Flat plate collector; Heat gain enhancement; Thermal efficiency; CFD; ABSORBER PLATE; AIR HEATER; WATER; ENERGY; STILL; STORAGE; SYSTEM; ROUNDNESS; EXERGY; DESIGN;
D O I
10.1016/j.heliyon.2024.e24218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, pebbles of higher specific heat than the conventional absorber materials like aluminium or copper are proposed as a absorber in the solar flat plate collector. The proposed collector are integrated into the building design and constructed with masonry. Tests were conducted by varying the operating parameters which influence its performance, like the flow rate of the heat-absorbing medium, and the tilt of the collector using both coated and uncoated pebbles. The maximum temperature difference that could be measured for a conventional absorber was approximately 8 degrees C for a flow rate of 0.6 L/min. While for a coated and uncoated absorber, it was 7 degrees C and 5.5 degrees C respectively. This difference decreased with an increase in flow rates from 0.6 L/min to 1.2 L/min. For all the flow rates, it was observed that the average difference in efficiency between the coated and the conventional absorber collector is 5.82 %, while the difference between the coated and uncoated absorber collector is 15.68 %. Thus, it is very much evident that by replacing the conventional absorber with the proposed coated pebble absorber, the overall loss in efficiency is just 5.82 %, but the advantages are enormous. Along with the experimental study, numerical analysis was also carried out with CFD modeling. The numerical results agreed well with experimental results with the least error. Therefore, CFD simulation can be further used to optimize the design of the collector.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Experimental and numerical analysis of thermal performance of shape stabilized PCM in a solar thermal collector
    Yeh, Chung-Yu
    Boonk, K. J. F.
    Sadeghi, Gholamabbas
    Mehrali, Mohammad
    Shahi, Mina
    Brem, Gerrit
    Mahmoudi, Amirhoushang
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 30
  • [2] Experimental study and numerical analysis of thermal performance of corrugated plate solar collector
    Yehualashet, Kalkidan Nigussie
    Fatoba, O.
    Asfaw, Salamlak Mulu
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2849 - 2856
  • [3] Experimental and numerical analysis of thermal losses of a parabolic trough solar collector
    Pigozzo Filho, Victor C.
    de Sa, Alexandre B.
    Passos, Julio C.
    Colle, Sergio
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 381 - 390
  • [4] An experimental and numerical approach for thermal performance investigation of solar flat plate collector
    Singh, Shiva
    Mausam, Kuwar
    Ghosh, Subrata Kumar
    Tiwari, Arun Kumar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (40) : 92859 - 92879
  • [5] An experimental and numerical approach for thermal performance investigation of solar flat plate collector
    Shiva Singh
    Kuwar Mausam
    Subrata Kumar Ghosh
    Arun Kumar Tiwari
    Environmental Science and Pollution Research, 2023, 30 : 92859 - 92879
  • [6] Experimental analysis on thermal performance of a solar air collector with a single pass
    Yang, Ming
    Wang, Pengsu
    Yang, Xudong
    Shan, Ming
    BUILDING AND ENVIRONMENT, 2012, 56 : 361 - 369
  • [7] Comparative study of pebble absorber solar thermal collector (PASTC) with conventional absorber solar thermal collector (CASTC)
    Naik, N. Channa Keshava
    Shekar, K. S. Shashi
    Gautham, M. G.
    Prasad, T. B.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 2641 - 2646
  • [8] ANALYSIS OF THERMAL PERFORMANCE OF A GREENHOUSE AS A SOLAR COLLECTOR
    BOULARD, T
    BAILLE, A
    ENERGY IN AGRICULTURE, 1987, 6 (01): : 17 - 26
  • [9] Experimental analysis and thermal performance of evacuated tube solar collector assisted solar dryer
    Kushwah, Anand
    Kumar, Anil
    Pal, Amit
    Gaur, Manoj Kumar
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5846 - 5851
  • [10] Thermal response of an asphalt solar collector: Numerical and experimental validation
    Abbas, Firas A.
    Alhamdo, Mohammed H.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 52