Transfer learning for occupancy-based HVAC control: A data-driven approach using unsupervised learning of occupancy profiles and deep reinforcement learning

被引:6
|
作者
Esrafilian-Najafabadi, Mohammad [1 ]
Haghighat, Fariborz [1 ]
机构
[1] Concordia Univ, Dept Bldg Civil & Environm Engn, Energy & Environm Grp, Montreal, PQ, Canada
关键词
Deep reinforcement learning; HVAC control; Transfer learning; Occupancy patterns; Energy efficiency; ENERGY; PREDICTION; THERMOSTATS;
D O I
10.1016/j.enbuild.2023.113637
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Model-free heating, ventilation, and air conditioning (HVAC) control systems have demonstrated promising potential for adjusting indoor setpoint temperature based on dynamic occupancy patterns in smart buildings. Although these control systems offer the advantage of not needing building or occupancy models, the involved trial-and-error learning process can cause considerable thermal discomfort for occupants, particularly during the initial learning period. Given the critical importance of thermal comfort, this limitation is a major barrier to the practical implementation of such systems. To address this challenge, the present study proposes a framework to enhance the learning process of the model-free HVAC controllers. Specifically, a transfer learning (TL) technique is adopted based on a similarity analysis of occupancy patterns using an unsupervised learning of occupancy profiles. This control framework leverages a k-means clustering algorithm with dynamic time warping to match the most similar households in terms of occupancy patterns within 26 residential units. The results demonstrate that the proposed method significantly improves the performance of the HVAC control system. It enhances the jumpstart performance and total rewards by nearly 25% and 5%, respectively, compared to a conventional model-free controller. Furthermore, it reduces the deviation period and mean temperature deviation by approximately 4% and 68%, respectively. Overall, this framework presents a promising approach to enhancing the performance and practicality of model-free HVAC control systems by reducing the thermal discomfort during the learning process.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Residential HVAC Control with Consideration of Human Occupancy
    McKee, Evan
    Du, Yan
    Li, Fangxing
    Munk, Jeffrey
    Johnston, Travis
    Kurte, Kuldeep
    Kotevska, Olivera
    Amasyali, Kadir
    Zandi, Helia
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [2] Occupancy-based HVAC control using deep learning algorithms for estimating online preconditioning time in residential buildings
    Esrafilian-Najafabadi, Mohammad
    Haghighat, Fariborz
    ENERGY AND BUILDINGS, 2021, 252
  • [3] On the Performance of Data-Driven Reinforcement Learning for Commercial HVAC Control
    Faddel, Samy
    Tian, Guanyu
    Zhou, Qun
    Aburub, Haneen
    2020 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2020,
  • [4] Occupancy-Based Energy Consumption Estimation Improvement through Deep Learning
    Kim, Mi-Lim
    Park, Keon-Jun
    Son, Sung-Yong
    SENSORS, 2023, 23 (04)
  • [5] Automatic Occupancy Prediction Using Unsupervised Learning in Buildings Data
    Habib, Usman
    Zucker, Gerhard
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1471 - 1476
  • [6] Data-Driven Robust Control Using Reinforcement Learning
    Ngo, Phuong D.
    Tejedor, Miguel
    Godtliebsen, Fred
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [7] Data-driven Offline Reinforcement Learning for HVAC-systems
    Blad, Christian
    Bogh, Simon
    Kallesoe, Carsten Skovmose
    ENERGY, 2022, 261
  • [8] Transfer Learning Applied to Reinforcement Learning-Based HVAC Control
    Lissa P.
    Schukat M.
    Barrett E.
    SN Computer Science, 2020, 1 (3)
  • [9] Enhancing HVAC control systems through transfer learning with deep reinforcement learning agents
    Kadamala, Kevlyn
    Chambers, Des
    Barrett, Enda
    SMART ENERGY, 2024, 13
  • [10] Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning
    Esrafilian-Najafabadi, Mohammad
    Haghighat, Fariborz
    BUILDING AND ENVIRONMENT, 2022, 226