Crop classification in high-resolution remote sensing images based on multi-scale feature fusion semantic segmentation model

被引:10
|
作者
Lu, Tingyu [1 ]
Gao, Meixiang [2 ,3 ]
Wang, Lei [4 ]
机构
[1] Harbin Normal Univ, Coll Geog Sci, Harbin, Peoples R China
[2] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo, Peoples R China
[3] Ningbo Univ, Sch Civil & Environm Engn & Geog Sci, Ningbo, Peoples R China
[4] Heilongjiang Inst Technol, Dept Surveying Engn, Harbin, Peoples R China
来源
关键词
remote sensing; crop classification; deep learning; convolutional neural network; multi-scale feature; SENTINEL-2; NETWORKS;
D O I
10.3389/fpls.2023.1196634
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The great success of deep learning in the field of computer vision provides a development opportunity for intelligent information extraction of remote sensing images. In the field of agriculture, a large number of deep convolutional neural networks have been applied to crop spatial distribution recognition. In this paper, crop mapping is defined as a semantic segmentation problem, and a multi-scale feature fusion semantic segmentation model MSSNet is proposed for crop recognition, aiming at the key problem that multi-scale neural networks can learn multiple features under different sensitivity fields to improve classification accuracy and fine-grained image classification. Firstly, the network uses multi-branch asymmetric convolution and dilated convolution. Each branch concatenates conventional convolution with convolution nuclei of different sizes with dilated convolution with different expansion coefficients. Then, the features extracted from each branch are spliced to achieve multi-scale feature fusion. Finally, a skip connection is used to combine low-level features from the shallow network with abstract features from the deep network to further enrich the semantic information. In the experiment of crop classification using Sentinel-2 remote sensing image, it was found that the method made full use of spectral and spatial characteristics of crop, achieved good recognition effect. The output crop classification mapping was better in plot segmentation and edge characterization of ground objects. This study can provide a good reference for high-precision crop mapping and field plot extraction, and at the same time, avoid excessive data acquisition and processing.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Semantic Segmentation on Remote Sensing Images with Multi-Scale Feature Fusion
    Zhang J.
    Jin Q.
    Wang H.
    Da C.
    Xiang S.
    Pan C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1509 - 1517
  • [2] A multi-scale semantic feature fusion method for remote sensing crop classification
    Huang, Xizhi
    Wang, Hong
    Li, Xiaobing
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [3] Unsupervised Multi-Scale Hybrid Feature Extraction Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Song, Wanying
    Nie, Fangxin
    Wang, Chi
    Jiang, Yinyin
    Wu, Yan
    REMOTE SENSING, 2024, 16 (20)
  • [4] Semantic Segmentation of Remote Sensing Images Based on Dual Attention and Multi-scale Feature Fusion
    Weng, Mengqian
    Hu, Zhibo
    Xie, Xiaopeng
    Li, Yunhong
    Hu, Lei
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [5] Multi-scale Adaptive Feature Fusion Network for Semantic Segmentation in Remote Sensing Images
    Shang, Ronghua
    Zhang, Jiyu
    Jiao, Licheng
    Li, Yangyang
    Marturi, Naresh
    Stolkin, Rustam
    REMOTE SENSING, 2020, 12 (05)
  • [6] Classification of High-Resolution Remote Sensing Images based on Multi-Scale Superposition
    Wang, Jinliang
    Gao, Wenjie
    Liu, Guangjie
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [7] Scene Classification of High-Resolution Remote Sensing Image by Multi-scale and Multi-feature Fusion
    Huang H.
    Xu K.-J.
    Shi G.-Y.
    Huang, Hong (hhuang@cqu.edu.cn), 1824, Chinese Institute of Electronics (48): : 1824 - 1833
  • [8] Multi-Scale and Multi-Network Deep Feature Fusion for Discriminative Scene Classification of High-Resolution Remote Sensing Images
    Yuan, Baohua
    Sehra, Sukhjit Singh
    Chiu, Bernard
    REMOTE SENSING, 2024, 16 (21)
  • [9] A mean shift multi-scale segmentation for high-resolution remote sensing images
    Shen, Zhanfeng
    Luo, Jiancheng
    Hu, Xiaodong
    Sun, Weigang
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University, 2010, 35 (03): : 313 - 316
  • [10] Multi-scale Feature Fusion and Transformer Network for urban green space segmentation from high-resolution remote sensing images
    Cheng, Yong
    Wang, Wei
    Ren, Zhoupeng
    Zhao, Yingfen
    Liao, Yilan
    Ge, Yong
    Wang, Jun
    He, Jiaxin
    Gu, Yakang
    Wang, Yixuan
    Zhang, Wenjie
    Zhang, Ce
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124