A class of weighted Hardy type inequalities in RN

被引:0
|
作者
Canale, Anna [1 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz Elettr & Matemat Appli, Via Giovanni Paolo II,132, I-84084 Salerno, Italy
关键词
Weighted Hardy type inequalities; Kolmogorov operators; Singular potentials; Evolution problems; OPERATORS; SPACES; UNIQUENESS; BOUNDS;
D O I
10.1007/s11587-021-00628-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we prove the weighted Hardy type inequality 1 integral V-RN phi(2)mu(x)dx <= integral(RN) vertical bar del phi vertical bar(2)mu(x)dx + K integral(RN)phi(2)mu(x)dx, (1) for functions. in a weighted Sobolev space H-mu(1), for a wider class of potentials V than inverse square potentials and for weight functions mu of a quite general type. The case mu = 1 is included. To get the result we introduce a generalized vector field method. The estimates apply to evolution problems with Kolmogorov operators Lu = Delta u + del mu/mu center dot del u perturbed by singular potentials.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条
  • [1] Some Hardy Type Inequalities in Rn
    HAN Ya-zhou
    Department of Mathematics
    数学季刊, 2006, (03) : 322 - 325
  • [2] WEIGHTED INEQUALITIES OF HARDY TYPE
    BATUEV, EN
    STEPANOV, VD
    SIBERIAN MATHEMATICAL JOURNAL, 1989, 30 (01) : 8 - 16
  • [3] Weighted Inequalities of Hardy Type
    Nemeth, J.
    ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (1-2): : 447 - 447
  • [4] WEIGHTED NORM INEQUALITIES OF HARDY TYPE FOR A CLASS OF INTEGRAL-OPERATORS
    STEPANOV, VD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 : 105 - 120
  • [5] On Hardy-Rellich type inequalities in RN
    Costa, David G.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 902 - 905
  • [6] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    Revista Matemática Complutense, 2022, 35 : 1 - 23
  • [7] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (01): : 1 - 23
  • [8] Weighted Hardy inequalities of the weak type
    Cerdà, J
    Martín, J
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 109 - 114
  • [9] ON WEIGHTED HARDY-TYPE INEQUALITIES
    Chuah, Chian Yeong
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Mei, Tao
    Michael, Isaac
    Pang, Michael M. H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 625 - 646
  • [10] A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles
    Canale, Anna
    Tarantino, Ciro
    MATHEMATICS, 2025, 13 (01)