Explainable AI-Based DDOS Attack Identification Method for IoT Networks

被引:20
|
作者
Kalutharage, Chathuranga Sampath [1 ]
Liu, Xiaodong [1 ]
Chrysoulas, Christos [1 ]
Pitropakis, Nikolaos [1 ]
Papadopoulos, Pavlos [1 ]
机构
[1] Edinburgh Napier Univ, Sch Comp Engn & Build Environm, Edinburgh EH10 5DT, Scotland
关键词
explainable AI; DDoS attack; IoT network; feature influence; anomaly detection; supervised learning; DEFENSE-MECHANISM; FRAMEWORK; INTERNET;
D O I
10.3390/computers12020032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The modern digitized world is mainly dependent on online services. The availability of online systems continues to be seriously challenged by distributed denial of service (DDoS) attacks. The challenge in mitigating attacks is not limited to identifying DDoS attacks when they happen, but also identifying the streams of attacks. However, existing attack detection methods cannot accurately and efficiently detect DDoS attacks. To this end, we propose an explainable artificial intelligence (XAI)-based novel method to identify DDoS attacks. This method detects abnormal behaviours of network traffic flows by analysing the traffic at the network layer. Moreover, it chooses the most influential features for each anomalous instance with influence weight and then sets a threshold value for each feature. Hence, this DDoS attack detection method defines security policies based on each feature threshold value for application-layer-based, volumetric-based, and transport control protocol (TCP) state-exhaustion-based features. Since the proposed method is based on layer three traffic, it can identify DDoS attacks on both Internet of Things (IoT) and traditional networks. Extensive experiments were performed on the University of Sannio, Benevento Instrution Detection System (USB-IDS) dataset, which consists of different types of DDoS attacks to test the performance of the proposed solution. The results of the comparison show that the proposed method provides greater detection accuracy and attack certainty than the state-of-the-art methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Explainable AI-Based DDoS Attacks Classification Using Deep Transfer Learning
    Alzu'bi, Ahmad
    Albashayreh, Amjad
    Abuarqoub, Abdelrahman
    Alfawair, Mai A. M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 3785 - 3802
  • [2] An AI-based approach for dynamic routing in IoT networks
    Gountia, Debasis
    Mishra, Pranati
    Dash, Ranjan Kumar
    Pradhan, Nihar Ranjan
    Mohanty, Sachi Nandan
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (03)
  • [3] A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks
    DeMedeiros, Kyle
    Hendawi, Abdeltawab
    Alvarez, Marco
    SENSORS, 2023, 23 (03)
  • [4] Explainable AI-based method for brain abnormality diagnostics using MRI
    Hosny, Mohamed
    Elshenhab, Ahmed M.
    Maged, Ahmed
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [5] DDoS attack detection techniques in IoT networks: a survey
    Pakmehr, Amir
    Assmuth, Andreas
    Taheri, Negar
    Ghaffari, Ali
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 14637 - 14668
  • [6] DyFiP: Explainable AI-based Dynamic Filter Pruning of Convolutional Neural Networks
    Sabih, Muhammad
    Hannig, Frank
    Teich, Juergen
    PROCEEDINGS OF THE 2022 2ND EUROPEAN WORKSHOP ON MACHINE LEARNING AND SYSTEMS (EUROMLSYS '22), 2022, : 109 - 115
  • [7] AI-Based Wormhole Attack Detection Techniques in Wireless Sensor Networks
    Hanif, Maria
    Ashraf, Humaira
    Jalil, Zakia
    Jhanjhi, Noor Zaman
    Humayun, Mamoona
    Saeed, Saqib
    Almuhaideb, Abdullah M.
    ELECTRONICS, 2022, 11 (15)
  • [8] Entropy and Divergence-based DDoS Attack Detection System in IoT Networks
    Saiyed, Makhduma
    Al Anbagi, Irfan
    2023 19TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB, 2023, : 224 - 230
  • [9] Dynamic Attack Detection in IoT Networks: An Ensemble Learning Approach With Q-Learning and Explainable AI
    Turaka, Padmasri
    Panigrahy, Saroj Kumar
    IEEE ACCESS, 2024, 12 : 161925 - 161940
  • [10] IoT-DH dataset for classification, identification, and detection DDoS attack in IoT
    Saif, Syaifuddin
    Widyawan, Widyawan
    Ferdiana, Ridi
    DATA IN BRIEF, 2024, 54