The role of rationality in integer-programming relaxations

被引:0
|
作者
Aprile, Manuel [1 ]
Averkov, Gennadiy [2 ]
Di Summa, Marco [1 ]
Hojny, Christopher [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] BTU Cottbus Senftenberg, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany
[3] Eindhoven Univ Technol, Combinatorial Optimizat Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Relaxation complexity; Simplex; Irrational numbers;
D O I
10.1007/s10107-023-01994-w
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For a finite set X subset of Z(d) that can be represented as X = Q n Z(d) for some polyhedron Q, we call Q a relaxation of X and define the relaxation complexity rc(X) of X as the least number of facets among all possible relaxations Q of X. The rational relaxation complexity rc(Q)( X) restricts the definition of rc( X) to rational polyhedra Q. In this article, we focus on X = Delta(d), the vertex set of the standard simplex, which consists of the null vector and the standard unit vectors in R-d. We show that rc(Delta(d)) = d for every d >= 5. That is, since rcQ(Delta(d)) = d + 1, irrationality can reduce the minimal size of relaxations. This answers an open question posed by Kaibel and Weltge (Math Program 154(1):407-425, 2015). Moreover, we prove the asymptotic statement rc(Delta(d))epsilon O(d/root log(d)), which shows that the ratio rc(Delta(d))/rc(Q)(Delta d) goes to 0, as d ->infinity.
引用
收藏
页码:745 / 771
页数:27
相关论文
共 50 条
  • [1] The role of rationality in integer-programming relaxations
    Manuel Aprile
    Gennadiy Averkov
    Marco Di Summa
    Christopher Hojny
    Mathematical Programming, 2024, 205 : 745 - 771
  • [2] Integer-Programming Software Systems
    Alper Atamtürk
    Martin W. P. Savelsbergh
    Annals of Operations Research, 2005, 140 : 67 - 124
  • [3] Integer-programming software systems
    Atamtürk, A
    Savelsbergh, MWP
    ANNALS OF OPERATIONS RESEARCH, 2005, 140 (01) : 67 - 124
  • [4] Integer-Programming Model for Plasmonic Waveguide Demultiplexers
    Quansheng Chen
    Yueke Wang
    Yujia Wu
    Plasmonics, 2015, 10 : 329 - 334
  • [5] Integer-Programming Model for Plasmonic Waveguide Demultiplexers
    Chen, Quansheng
    Wang, Yueke
    Wu, Yujia
    PLASMONICS, 2015, 10 (02) : 329 - 334
  • [6] MANIFOLD RELAXATIONS FOR INTEGER PROGRAMMING
    Feng, Zhiguo
    Yiu, Ka-Fai Cedric
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (02) : 557 - 566
  • [7] AN INTERACTIVE HEURISTIC APPROACH FOR MULTIOBJECTIVE INTEGER-PROGRAMMING PROBLEMS
    GABBANI, D
    MAGAZINE, M
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1986, 37 (03) : 285 - 291
  • [8] Pathway mapping operon information: An integer-programming method
    Mao, FL
    Olman, V
    Xu, Y
    Su, ZC
    Chuang, D
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 642 - 643
  • [9] A progressive mixed integer-programming method for pump scheduling
    McCormick, G
    Powell, RS
    ADVANCES IN WATER SUPPLY MANAGEMENT, 2003, : 307 - 313
  • [10] Complexity of linear relaxations in integer programming
    Gennadiy Averkov
    Matthias Schymura
    Mathematical Programming, 2022, 194 : 191 - 227