On the Fourier asymptotics of absolutely continuous measures with power-law singularities

被引:0
|
作者
Aloisio, M. [1 ]
de Carvalho, S. L. [2 ]
de Oliveira, C. R. [3 ]
Souza, E. [4 ,5 ]
机构
[1] Univ Fed Vales Jequitinhonha & Mucuri, Dept Matemat & Estat, BR-39100000 Diamantina, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-30161970 Belo Horizonte, MG, Brazil
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil
[4] Univ Fed Amazonas, Dept Matemat, BR-369067005 Manaus, AM, Brazil
[5] Univ Estado Amazonas, BR-369067005 Manaus, AM, Brazil
关键词
HOLDER CONTINUITY; TRANSFER-MATRICES;
D O I
10.1063/5.0149320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove sharp estimates on the time-average behavior of the squared absolute value of the Fourier transform of some absolutely continuous measures that may have power-law singularities, in the sense that their Radon-Nikodym derivatives diverge with a power-law order. We also discuss an application to spectral measures of finite-rank perturbations of the discrete Laplacian.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On Fourier frame of absolutely continuous measures
    Lai, Chun-Kit
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (10) : 2877 - 2889
  • [2] Optical solitons with power-law asymptotics
    Micallef, RW
    Afanasjev, VV
    Kivshar, YS
    Love, JD
    PHYSICAL REVIEW E, 1996, 54 (03): : 2936 - 2942
  • [3] Scattering of the φ8 kinks with power-law asymptotics
    Belendryasova, Ekaterina
    Gani, Vakhid A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 414 - 426
  • [4] Scalar polynomial singularities in power-law spacetimes
    Kayll Lake
    General Relativity and Gravitation, 2008, 40 : 1609 - 1617
  • [5] Scalar polynomial singularities in power-law spacetimes
    Lake, Kayll
    GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (08) : 1609 - 1617
  • [6] FOURIER COEFFICIENTS OF POWER-LAW DEVICES
    PENFIELD, P
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1962, 273 (02): : 107 - &
  • [8] Equilibrium measures and Cramer asymptotics in a non-invertible dynamical system with power-law mixing
    Sarazhinskii, DS
    SBORNIK MATHEMATICS, 2004, 195 (9-10) : 1359 - 1375
  • [9] Power-law singularities in gravity-capillary waves
    Hogrefe, JE
    Peffley, NL
    Goodridge, CL
    Shi, WT
    Hentschel, HGE
    Lathrop, DP
    PHYSICA D, 1998, 123 (1-4): : 183 - 205
  • [10] Quantum healing of classical singularities in power-law spacetimes
    Helliwell, T. M.
    Konkowski, D. A.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (13) : 3377 - 3390