Camouflaged object detection with counterfactual intervention

被引:8
|
作者
Li, Xiaofei [1 ]
Li, Hongying [1 ]
Zhou, Hao [2 ]
Yu, Miaomiao [1 ]
Chen, Dong [3 ]
Li, Shuohao [1 ]
Zhang, Jun [1 ]
机构
[1] Natl Univ Def Technol, Lab Big Data & Decis, 109 Deya Rd, Changsha 410003, Hunan, Peoples R China
[2] Naval Univ Engn, Dept Operat & Planning, 717 Jianshe Ave, Wuhan 430033, Hubei, Peoples R China
[3] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, 109 Deya Rd, Changsha 410003, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Camouflaged object detection; Texture-aware; Context-aware; Counterfactual intervention; SEGMENTATION; NETWORK;
D O I
10.1016/j.neucom.2023.126530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Camouflaged object detection (COD) aims to identify camouflaged objects hiding in their surroundings, which is a valuable yet challenging task. The main challenge is that there are ambiguous semantic biases in the camouflaged object datasets, which affect the results of COD. To address this challenge, we design a counter-factual intervention network (CINet) to mitigate the influences of ambiguous semantic biases and obtain accurate COD. Specifically, our CINet consists of three key modules, i.e., texture-aware interaction module (TIM), context-aware fusion module (CFM), and counterfactual intervention module (CIM). The TIM is designed to extract the refined textures for accurate localization, the CFM is proposed to fuse the multi-scale contextual features to enhance the detection performance, and the CIM is presented to learn more effective textures and make unbiased predictions. Unlike most existing COD methods that directly capture contextual features through the final loss function, we develop a counterfactual intervention strategy to learn more effective contextual textures. Extensive experiments on four challenging benchmark datasets demonstrate that our CINet significantly outperforms 31 state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Camouflaged Object Detection
    Fan, Deng-Ping
    Ji, Ge-Peng
    Sun, Guolei
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2774 - 2784
  • [2] A new benchmark for camouflaged object detection: RGB-D camouflaged object detection dataset
    Zhang, Dongdong
    Wang, Chunping
    Fu, Qiang
    OPEN PHYSICS, 2024, 22 (01):
  • [3] Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection
    Liu, Yi
    Li, Chengxin
    Dong, Xiaohui
    Li, Lei
    Zhang, Dingwen
    Xu, Shoukun
    Han, Jungong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 274
  • [4] Camouflaged Object Detection and Tracking: A Survey
    Mondal, Ajoy
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2020, 20 (04)
  • [5] Camouflaged Object Detection System at the Edge
    Putatunda, Rohan
    Gangopadhyay, Aryya
    Erbacher, Robert F.
    Busart, Carl
    AUTOMATIC TARGET RECOGNITION XXXII, 2022, 12096
  • [6] Background Subtraction for Camouflaged Object Detection
    Han, Guang
    Wang, Jinkuan
    Cai, Xi
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 912 - 915
  • [7] Polarization-based Camouflaged Object Detection
    Wang, Xin
    Zhang, Zhao
    Gao, Jun
    PATTERN RECOGNITION LETTERS, 2023, 174 : 106 - 111
  • [8] Camouflaged object detection via boundary refinement
    Zhang, Miaohui
    Shen, Chenxing
    Deng, Yangyang
    Wang, Li
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [9] Key Object Detection: Unifying Salient and Camouflaged Object Detection Into One Task
    Yin, Pengyu
    Fu, Keren
    Zhao, Qijun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XII, 2025, 15042 : 536 - 550
  • [10] Depth-aided Camouflaged Object Detection
    Wang, Qingwei
    Yang, Jinyu
    Yu, Xiaosheng
    Wang, Fangyi
    Chen, Peng
    Zheng, Feng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3297 - 3306