Perturbations of embedded eigenvalues for self-adjoint ODE systems

被引:1
|
作者
Sasane, Sara Maad [1 ]
Papalazarou, Alexia [1 ]
机构
[1] Lund Univ, Ctr Math Sci, Box 118, S-22100 Lund, Sweden
来源
ARKIV FOR MATEMATIK | 2023年 / 61卷 / 01期
关键词
D O I
10.4310/ARKIV.2023.v61.n1.a9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a perturbation problem for embedded eigenvalues of a self-adjoint differential operator in L-2(R; R-n). In particular, we study the set of all small perturbations in an appropriate Banach space for which the embedded eigenvalue remains embedded in the continuous spectrum. We show that this set of small perturbations forms a smooth manifold and we specify its co-dimension. Our methods involve the use of exponential dichotomies, their roughness property and Lyapunov-Schmidt reduction.
引用
收藏
页码:177 / 202
页数:26
相关论文
共 50 条