Generation of human otic neuronal organoids using pluripotent stem cells

被引:2
|
作者
Sun, Gaoying [1 ,2 ,3 ]
Tang, Mingming [1 ,4 ,5 ]
Wang, Xinyue [1 ,2 ]
Li, Da [1 ,4 ,5 ]
Liu, Wenwen [3 ]
Qi, Jianhuan [1 ,2 ]
Wang, Haibo [3 ,7 ]
Hu, Baoyang [1 ,2 ,4 ,6 ]
机构
[1] Chinese Acad Sci, Inst Zool, State Key Lab Stem Cell & Reprod Biol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Shandong Univ, Shandong Prov ENT Hosp, Cheeloo Coll Med, Dept Otolaryngol Head & Neck Surg, Jinan, Peoples R China
[4] Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing, Peoples R China
[5] Beijing Inst Stem Cell & Regenerat Med, Beijing, Peoples R China
[6] Chinese Acad Sci, Natl Stem Cell Resource Ctr, Beijing, Peoples R China
[7] Shandong Univ, Shandong Prov ENT Hosp, Cheeloo Coll Med, Dept Otolaryngol Head & Neck Surg, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1111/cpr.13434
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Otic neurons, also known as spiral ganglion neurons (SGNs) in mammalian cochlea, transmit electrical signals from sensory hair cells to cochlear nuclei of the auditory system. SGNs are sensitive to toxic insults, vulnerable to get irreversible damaged and hardly regenerate after damage, causing persistent sensorineural hearing loss. Yet, to get authentic SGNs for research or therapeutic purpose remains challenging. Here we developed a protocol to generate human otic neuronal organoids (hONOs) from human pluripotent stem cells (hESCs), in which hESCs were step-wisely induced to SGNs of the corresponding stages according to their developmental trajectory. The hONOs were enriched for SGN-like cells at early stage, and for both neurons and astrocytes, Schwann cells or supporting cells thereafter. In these hONOs, we also determined the existence of typical Type I and Type II SGNs. Mature hONOs (at differentiation Day 60) formed neural network, featured by giant depolarizing potential (GDP)-like events and rosette-organized regions-elicited calcium traces. Electrophysiological analysis confirmed the existence of glutamate-responsive neurons in these hONOs. The otic neuronal organoids generated in this study provide an ideal model to study SGNs and related disorders, facilitating therapeutic development for sensorineural hearing loss.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Generation of otic lineages from human induced pluripotent stem cells
    Boddy, Sarah
    Romero-Guevara, Ricardo
    Unger, Christian
    Andrews, Peter
    Rivolta, Marcelo
    HUMAN GENE THERAPY, 2013, 24 (05) : A26 - A27
  • [2] Generation of cerebral organoids from human pluripotent stem cells
    Lancaster, Madeline A.
    Knoblich, Juergen A.
    NATURE PROTOCOLS, 2014, 9 (10) : 2329 - 2340
  • [3] Generation of kidney organoids from human pluripotent stem cells
    Takasato, Minoru
    Er, Pei X.
    Chiu, Han S.
    Little, Melissa H.
    NATURE PROTOCOLS, 2016, 11 (09) : 1681 - 1692
  • [4] Generation of kidney organoids from human pluripotent stem cells
    Minoru Takasato
    Pei X Er
    Han S Chiu
    Melissa H Little
    Nature Protocols, 2016, 11 : 1681 - 1692
  • [5] Generation of cerebral organoids from human pluripotent stem cells
    Madeline A Lancaster
    Juergen A Knoblich
    Nature Protocols, 2014, 9 : 2329 - 2340
  • [6] Generation of human colonic organoids from human pluripotent stem cells
    Daoud, Abdelkader
    Munera, Jorge O.
    HUMAN PLURIPOTENT STEM CELL DERIVED ORGANOID MODELS, 2020, 159 : 201 - 227
  • [7] Generation of Human Blood Vessel Organoids from Pluripotent Stem Cells
    Werschler, Nicolas
    Penninger, Josef
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (191):
  • [8] Generation of hepatobiliary organoids from human induced pluripotent stem cells
    Wu, Fenfang
    Wu, Di
    Ren, Yong
    Huang, Yuhua
    Feng, Bo
    Zhao, Nan
    Zhang, Taotao
    Chen, Xiaoni
    Chen, Shangwu
    Xu, Anlong
    JOURNAL OF HEPATOLOGY, 2019, 70 (06) : 1145 - 1158
  • [9] Generation of kidney tubular organoids from human pluripotent stem cells
    Yamaguchi, Shintaro
    Morizane, Ryuji
    Homma, Koichiro
    Monkawa, Toshiaki
    Suzuki, Sayuri
    Fujii, Shizuka
    Koda, Muneaki
    Hiratsuka, Ken
    Yamashita, Maho
    Yoshida, Tadashi
    Wakino, Shu
    Hayashi, Koichi
    Sasaki, Junichi
    Hori, Shingo
    Itoh, Hiroshi
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Generation of functional thymic organoids from human pluripotent stem cells
    Ramos, Stephan A.
    Armitage, Lucas H.
    Morton, John J.
    Alzofon, Nathaniel
    Handler, Diana
    Kelly, Geoffrey
    Homann, Dirk
    Jimeno, Antonio
    Russ, Holger A.
    STEM CELL REPORTS, 2023, 18 (04): : 829 - 840