Theoretical mechanism of boundary-driven instability of the reaction-diffusion population system

被引:0
|
作者
Song, Yong-Li [1 ,2 ]
Yang, Gao-Xiang [1 ,3 ]
机构
[1] Ankang Univ, Sch Math & Stat, Ankang 725000, Shaanxi, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[3] Ankang Univ, Inst Math & Appl Math, Ankang 725000, Shaanxi, Peoples R China
关键词
Neumann boundary condition; Dirichlet boundary condition; mixed type boundary conditions; stability; spatiotemporal patterns; PREDATOR-PREY MODEL; BIFURCATION;
D O I
10.1142/S1793524523500912
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study the stability of a constant equilibrium solution of the reaction-diffusion population equation under different boundary conditions through analysis of its characteristic equation. In a scalar reaction-diffusion equation, we have found that the stability of a constant equilibrium solution is different when the scalar reaction-diffusion equation is subject to Neumann boundary conditions, Dirichlet boundary conditions and the mixed type boundary conditions, respectively. Similarly, the more complex results are found in the two reaction-diffusion equations with all different kinds boundary conditions. The relevant numerical calculation results are carried out to demonstrate the validity of theoretical analysis.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Positional information trade-offs in boundary-driven reaction-diffusion systems
    Berx, Jonas
    Singh, Prashant
    Proesmans, Karel
    NEW JOURNAL OF PHYSICS, 2025, 27 (02):
  • [2] Boundary-driven instability
    Appl Math Lett, 1 (01):
  • [3] Boundary-driven instability
    Maini, PK
    Myerscough, MR
    APPLIED MATHEMATICS LETTERS, 1997, 10 (01) : 1 - 4
  • [4] Experimental observation of boundary-driven oscillations in a reaction-diffusion-advection system
    Eckstein, Torsten
    Vidal-Henriquez, Estefania
    Gholami, Azam
    SOFT MATTER, 2020, 16 (17) : 4243 - 4255
  • [5] Diffusion-driven instability in reaction-diffusion systems
    Wang, LC
    Li, MY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (01) : 138 - 153
  • [6] A boundary-driven reaction front
    Merkin, J. H.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (03) : 1056 - 1075
  • [7] A boundary-driven reaction front
    J. H. Merkin
    Journal of Mathematical Chemistry, 2013, 51 : 1056 - 1075
  • [8] LARGE DEVIATIONS OF THE EMPIRICAL CURRENTS FOR A BOUNDARY-DRIVEN REACTION DIFFUSION MODEL
    Bodineau, Thierry
    Lagouge, Maxime
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (06): : 2282 - 2319
  • [9] Transversal instability for the thermodiffusive reaction-diffusion system
    Michal Kowalczyk
    Benoît Perthame
    Nicolas Vauchelet
    Chinese Annals of Mathematics, Series B, 2015, 36 : 871 - 882
  • [10] Transversal Instability for the Thermodiffusive Reaction-Diffusion System
    Michal KOWALCZYK
    Beno?t PERTHAME
    Nicolas VAUCHELET
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (05) : 871 - 882