Algebraic structures on commutative coquantales

被引:0
|
作者
Oh, Ju-Mok [1 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Math & Phys, Kangnung, Gangwon, South Korea
关键词
Commutative coquantales; commutative coquantale frames; distance functions; Alexandrov topologies; DUALITY;
D O I
10.3233/JIFS-223367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present the notion of commutative coquantale frames as logical relational systems. We introduce an approach to study these frames through the utilization of distance functions in place of the commonly used fuzzy partially orders. We show that a commutative coquantale frame can be regarded as an algebraic structure that induces a commutative coquantale, while a commutative coquantale with q-distance function leads to the development of a commutative coquantale frame. Moreover, we provide several examples pertaining to these notions.
引用
收藏
页码:2899 / 2917
页数:19
相关论文
共 50 条
  • [1] Transferring homotopy commutative algebraic structures
    Cheng, Xue Zhi
    Getzler, Ezra
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2535 - 2542
  • [2] INVOLUTIVE AND COMMUTATIVE DUAL ALGEBRAIC STRUCTURES
    LAIR, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (26): : 1647 - 1650
  • [3] Commutative algebraic monoid structures on affine surfaces
    Dzhunusov, Sergey
    Zaitseva, Yulia
    FORUM MATHEMATICUM, 2021, 33 (01) : 177 - 191
  • [4] Commutative algebraic monoid structures on affine spaces
    Arzhantsev, Ivan
    Bragin, Sergey
    Zaitseva, Yulia
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (08)
  • [5] On Smarandache algebraic structures.: III:: The commutative ring B(a,n)
    Le, MH
    SMARANDACHE NOTIONS, VOL 12, 2001, 12 : 209 - 210
  • [6] On Smarandache algebraic structures.: IV:: The commutative ring C(a,n)
    Le, MH
    SMARANDACHE NOTIONS, VOL 12, 2001, 12 : 211 - 212
  • [7] On Smarandache algebraic structures.: I:: The commutative multiplicative semigroup A(a,n)
    Le, MH
    SMARANDACHE NOTIONS, VOL 12, 2001, 12 : 204 - 206
  • [8] ALGEBRAIC SUBGROUPS OF COMMUTATIVE ALGEBRAIC-GROUPS
    BERTRAND, D
    PHILIPPON, P
    ILLINOIS JOURNAL OF MATHEMATICS, 1988, 32 (02) : 263 - 280
  • [9] Non-commutative algebraic geometry and commutative desingularizations
    Le Bruyn, L
    Noncommutative Algebra and Geometry, 2006, 243 : 203 - 252
  • [10] Twisting commutative algebraic groups
    Mazur, B.
    Rubin, K.
    Silverberg, A.
    JOURNAL OF ALGEBRA, 2007, 314 (01) : 419 - 438