Significance of handcrafted features in human activity recognition with attention-based RNN models

被引:0
|
作者
Abraham, Sonia [1 ]
James, Rekha K. [2 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Sci, Kochi, Kerala, India
[2] Cochin Univ Sci & Technol, Sch Engn, Div Elect, Kochi, Kerala, India
关键词
Attention mechanism; deep learning; Gated Recurrent Units; NEURAL-NETWORK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sensors incorporated in devices are a source of temporal data that can be interpreted to learn the context of a user. The smartphone accelerometer sensor generates data streams that form distinct patterns in response to user activities. The human context can be predicted using deep learning models built from raw sensor data or features retrieved from raw data. This study analyzes data streams from the UCI-HAR public dataset for activity recognition to determine 31 handcrafted features in the temporal and frequency domain. Various stacked and combination RNN models, trained with attention mechanisms, are designed to work with computed features. Attention gave the models a good fit. When trained with all features, the two-stacked GRU model performed best with 99% accuracy. Selecting the most promising features helps reduce training time without compromising accuracy. The ranking supplied by the permutation feature importance measure and Shapley values are utilized to identify the best features from the highly correlated features. Models trained using optimal features, as determined by the importance measures, had a 96% accuracy rate. Misclassification in attention-based classifiers occurs in the prediction of dynamic activities, such as walking upstairs and walking downstairs, and in sedentary activities, such as sitting and standing, due to the similar range of each activity's axis values. Our research emphasizes the design of streamlined neural network architectures, characterized by fewer layers and a reduced number of neurons when compared to existing models in the field, to design lightweight models to be implemented in resource-constraint gadgets.
引用
收藏
页码:1151 / 1163
页数:13
相关论文
共 50 条
  • [1] Brain Activity Recognition Method Based on Attention-Based RNN Mode
    Zhou, Song
    Gao, Tianhan
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [2] An Information Gain-Based Model and an Attention-Based RNN for Wearable Human Activity Recognition
    Liu, Leyuan
    He, Jian
    Ren, Keyan
    Lungu, Jonathan
    Hou, Yibin
    Dong, Ruihai
    ENTROPY, 2021, 23 (12)
  • [3] Attention-Based Models for Speech Recognition
    Chorowski, Jan
    Bahdanau, Dzmitry
    Serdyuk, Dmitriy
    Cho, Kyunghyun
    Bengio, Yoshua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [4] Fusing Handcrafted and Contextual Features for Human Activity Recognition
    Vernikos, Ioannis
    Mathe, Eirini
    Spyrou, Evaggelos
    Mitsou, Alexandros
    Giannakopoulos, Theodore
    Mylonas, Phivos
    2019 14TH INTERNATIONAL WORKSHOP ON SEMANTIC AND SOCIAL MEDIA ADAPTATION AND PERSONALIZATION (SMAP), 2019, : 36 - 41
  • [5] Attention-based LSTM Network for Wearable Human Activity Recognition
    Sun, Bo
    Liu, Meiqin
    Zheng, Ronghao
    Zhang, Senlin
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8677 - 8682
  • [6] Attention-Based Residual BiLSTM Networks for Human Activity Recognition
    Zhang, Junjie
    Liu, Yuanhao
    Yuan, Hua
    IEEE ACCESS, 2023, 11 : 94173 - 94187
  • [7] Distilling the Knowledge From Handcrafted Features for Human Activity Recognition
    Chen, Zhenghua
    Zhang, Le
    Cao, Zhiguang
    Guo, Jing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (10) : 4334 - 4342
  • [8] DAMTRNN: A Delta Attention-Based Multi-task RNN for Intention Recognition
    Chen, Weitong
    Yue, Lin
    Li, Bohan
    Wang, Can
    Sheng, Quan Z.
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2019, 2019, 11888 : 373 - 388
  • [9] Context-aware Cascade Attention-based RNN for Video Emotion Recognition
    Sun, Man-Chin
    Hsu, Shih-Huan
    Yang, Min-Chun
    Chien, Jen-Hsien
    2018 FIRST ASIAN CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII ASIA), 2018,
  • [10] A fuzzy convolutional attention-based GRU network for human activity recognition
    Khodabandelou, Ghazaleh
    Moon, Huiseok
    Amirat, Yacine
    Mohammed, Samer
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118