Hardy inequalities on metric measure spaces, III: the case q ≤ p ≤ 0 and applications

被引:2
|
作者
Kassymov, A. [1 ,4 ,5 ]
Ruzhansky, M. [1 ,2 ]
Suragan, D. [3 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Nur Sultan 010000, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin St, Alma Ata 050010, Kazakhstan
[5] Al Farabi Kazakh Natl Univ, 71 Al-Farabi Ave, Alma Ata 050040, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
reverse Hardy inequality; metric measure space; reverse Hardy-Littlewood-Sobolev inequality; reverse Stein-Weiss inequality; STEIN-WEISS INEQUALITIES; LITTLEWOOD-SOBOLEV; FRACTIONAL INTEGRALS; SHARP CONSTANTS; EXISTENCE;
D O I
10.1098/rspa.2022.0307
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we obtain a reverse version of the integral Hardy inequality on metric measure space with two negative exponents. For applications we show the reverse Hardy-Littlewood-Sobolev and the Stein-Weiss inequalities with two negative exponents on homogeneous Lie groups and with arbitrary quasi-norm, the result of which appears to be new in the Euclidean space. This work further complements the ranges of p and q (namely, q <= p<0) considered in the work of Ruzhansky & Verma (Ruzhansky & Verma 2019 Proc. R. Soc. A 475, 20180310 (); Ruzhansky & Verma. 2021 Proc. R. Soc. A 477, 20210136 ()), which treated the cases 1<p <= q<infinity and p>q, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Hardy inequalities on metric measure spaces, II: the case p &gt; q
    Ruzhansky, Michael
    Verma, Daulti
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2250):
  • [2] Hardy inequalities on metric measure spaces, IV: The case p=1
    Ruzhansky, Michael
    Shriwastawa, Anjali
    Tiwari, Bankteshwar
    FORUM MATHEMATICUM, 2024, 36 (06) : 1603 - 1611
  • [3] Hardy inequalities on metric measure spaces
    Ruzhansky, Michael
    Verma, Daulti
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2223):
  • [4] Hardy and Rellich type inequalities on metric measure spaces
    Du, Feng
    Mao, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 354 - 365
  • [5] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    ScienceChina(Mathematics), 2015, 58 (02) : 309 - 388
  • [6] Hardy spaces H p over non-homogeneous metric measure spaces and their applications
    Fu Xing
    Lin HaiBo
    Yang DaChun
    Yang DongYong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 309 - 388
  • [7] Nagy type inequalities in metric measure spaces and some applications
    Babenko, V. F.
    Babenko, V. V.
    Kovalenko, O., V
    Parfinovych, N., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 563 - 575
  • [8] Large scale Sobolev inequalities on metric measure spaces and applications
    Tessera, Romain
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) : 825 - 864
  • [9] Hardy spaces Hp over non-homogeneous metric measure spaces and their applications
    Xing Fu
    HaiBo Lin
    DaChun Yang
    DongYong Yang
    Science China Mathematics, 2015, 58 : 309 - 388
  • [10] Hardy type identities and inequalities with divergence type operators on smooth metric measure spaces
    Wang, Pengyan
    Wang, Jiahao
    AIMS MATHEMATICS, 2024, 9 (06): : 16354 - 16375