Interfacial characteristics of austenitic 316 L and martensitic 15-5PH stainless steels joined by laser powder bed fusion

被引:7
|
作者
Liang, Anqi [1 ]
Sahu, Sandeep [1 ]
Zhao, Xiao [2 ]
Polcar, Tomas [1 ]
Hamilton, Andrew R. [1 ]
机构
[1] Univ Southampton, Engn & Phys Sci, Highfield Campus, Southampton SO17 1BJ, England
[2] Univ Southampton, Engn & Phys Sci, Boldrewood Innovat Campus, Southampton SO16 7QF, England
关键词
Multi-material additive manufacture; Joining; Laser powder bed fusion; 316 L stainless steel; 15-5PH stainless steel; Interfacial characterization; HEAT-TREATMENT; MECHANICAL-PROPERTIES; FATIGUE LIFE; MICROSTRUCTURE; STRENGTH; BEHAVIOR; DIFFUSION; ENERGY; PARTS;
D O I
10.1016/j.matchar.2023.112719
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) is an additive manufacturing (AM) technology capable of producing complex geometry components from a range of metals and alloys. The static mechanical strength of LPBF manufactured materials can rival that of the equivalent cast and wrought materials, but are more susceptible to fatigue failures due to stress concentrating roughness and porosity defects. The ability to process and join multiple powder materials within a single LPBF build process is an emerging capability that is now becoming commercially available. This new capability offers the possibility of compositional complexity, in addition to the geometric complexity offered by AM, and can help to eliminate the need for additional processing to join different mate-rials. This study focuses on the combination of 316 L austenitic stainless steel (SS) and precipitation hardening 15-5PH martensitic SS by LPBF. The interfacial characteristics and microhardness variation at the interface were investigated by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, electron backscatter diffraction, and microhardness testing. Good apparent bonding was observed at the interface without any visible cracks or defects. A finer-grain region was observed at a distance of 115 mu m below the interface with a grain size of about 25% of that in the surrounding 15-5PH SS. A narrow compositional transition distance of 7 mu m along the building direction (less than the 30 mu m LPBF layer thickness) and a wavey-morphology interface with an amplitude of about 66 mu m (about twice the LPBF layer thickness) were found. A sharp change of hardness was measured within +/- 200 mu m from the interface. Regions far from the interface exhibited similar micro-structure and hardness as the corresponding single material components. The results suggest that LPBF joining between 316 L SS and 15-5PH SS can achieve each material's distinct microstructure and properties at far -interface regions, with a narrow wavey region (similar to 115 mu m) at the interface that exhibits high densification and a sharp transition in microstructure and properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Microstructural characterization of 15-5PH stainless steel processed by laser powder-bed fusion
    Unti, L. F. Kultz
    Aota, L. S.
    Jardini, A. L.
    Tschiptschin, A. P.
    Sandim, H. R. Z.
    Jaegle, E. A.
    Zilnyk, K. D.
    MATERIALS CHARACTERIZATION, 2021, 181
  • [2] Deformation-induced martensitic transformation in 316L stainless steels fabricated by laser powder bed fusion
    Ni, Xiaoqing
    Kong, Decheng
    Wu, Wenheng
    Zhang, Liang
    Dong, Chaofang
    MATERIALS LETTERS, 2021, 302
  • [3] AUSTENITIC STAINLESS STEELS MANUFACTURING BY LASER POWDER BED FUSION TECHNIQUE
    Di Schino, Andrea
    Fogarait, Paolo
    Corapi, Domenico
    Di Pietro, Orlando
    Zitelli, Chiara
    ACTA METALLURGICA SLOVACA, 2020, 26 (01): : 24 - 26
  • [4] Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
    Khaleghifar, Farzaneh
    Razeghi, Khashayar
    Heidarzadeh, Akbar
    Mousavian, Reza Taherzadeh
    METALS, 2021, 11 (04)
  • [5] Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel
    Chueh, Yuan-Hui
    Hsieh, Bing-Yen
    Shih, Albert J.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2024, 73 (01) : 145 - 148
  • [6] Parameter Optimization and Flaw Type Dependent Tensile Properties of 15-5PH Stainless Steel Manufactured by Laser Powder Bed Fusion
    Ayers, Nicolas
    Lucas, Cameron
    Mahmud, Asif
    Kljestan, Nemanja
    Knezevic, Marko
    Sohn, Yongho
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (23)
  • [7] Local valence analysis of 316L austenitic stainless steel produced by laser powder bed fusion
    Sato, Kazuhisa
    Takagi, Shunya
    Ichikawa, Satoshi
    Ishimoto, Takuya
    Nakano, Takayoshi
    MATERIALS LETTERS, 2024, 372
  • [8] Applications of Wrought Austenitic Stainless Steel Corrosion Testing to Laser Powder Bed Fusion 316L
    Macatangay, Duane Armell T.
    Conrades, Jenna M.
    Brunner, Keegan L.
    Kelly, Robert G.
    CORROSION, 2022, 78 (01) : 13 - 24
  • [9] Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review
    Zai, Le
    Zhang, Chaoqun
    Wang, Yiqiang
    Guo, Wei
    Wellmann, Daniel
    Tong, Xin
    Tian, Yingtao
    METALS, 2020, 10 (02)
  • [10] Dependences of the defect, microstructure and properties of 15-5 PH martensitic stainless steel on the laser powder bed fusion process parameters
    Chen, Bin
    Li, Jianing
    Huang, Zhenghua
    Zhao, Binbin
    Chen, Feng
    Yan, Zhiqiao
    Liu, Jianye
    Qi, Wenjun
    Niu, Liuhui
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 901