The new era of artificial intelligence in neuroradiology: current research and promising tools

被引:0
|
作者
Macruz, Fabiola Bezerra de Carvalho [1 ,2 ,3 ,4 ]
Dias, Ana Luiza Mandetta Pettengil [5 ]
Andrade, Celi Santos [6 ]
Nucci, Mariana Penteado [3 ]
Rimkus, Carolina de Medeiros [1 ,2 ,3 ]
Lucato, Leandro Tavares [1 ,5 ]
da Rocha, Antonio Jose [5 ]
Kitamura, Felipe Campos [5 ,7 ]
机构
[1] Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
[2] Rede DOr Sao Luiz, Dept Radiol & Diagnost Imagem, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Lab Invest Med Ressonancia Magnet LIM 44, Sao Paulo, SP, Brazil
[4] Acad Nacl Med, Rio De Janeiro, RJ, Brazil
[5] Diagnost Amer SA, Sao Paulo, SP, Brazil
[6] Allianca Grp, Ctr Diagnost Brasil, Sao Paulo, SP, Brazil
[7] Univ Fed Sao Paulo, Sao Paulo, SP, Brazil
关键词
Artificial Intelligence; Deep Learning; Machine Learning; Neuroradiology; Inteligencia Artificial; Aprendizado Profundo; Aprendizado de Maquina; Neurorradiologia; DIGITAL-SUBTRACTION-ANGIOGRAPHY; MULTIPLE-SCLEROSIS; MOYAMOYA-DISEASE; DIAGNOSIS; MRI; EPILEPSY; SIGN;
D O I
10.1055/s-0044-1779486
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Artificial Intelligence in Neuroradiology: Current Status and Future Directions
    Lui, Y. W.
    Chang, P. D.
    Zaharchuk, G.
    Barboriak, D. P.
    Flanders, A. E.
    Wintermark, M.
    Hess, C. P.
    Filippi, C. G.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (08) : E52 - E59
  • [2] Current Perspectives of Artificial Intelligence in Pediatric Neuroradiology: An Overview
    Martin, Dann
    Tong, Elizabeth
    Kelly, Brendan
    Yeom, Kristen
    Yedavalli, Vivek
    FRONTIERS IN RADIOLOGY, 2021, 1
  • [3] Current Trends in Fluid Research in the Era of Artificial Intelligence: A Review
    Sofos, Filippos
    Stavrogiannis, Christos
    Exarchou-Kouveli, Kalliopi K.
    Akabua, Daniel
    Charilas, George
    Karakasidis, Theodoros E.
    FLUIDS, 2022, 7 (03)
  • [4] Artificial Intelligence in Neuroradiology: A Review of Current Topics and Competition Challenges
    Wagner, Daniel T.
    Tilmans, Luke
    Peng, Kevin
    Niedermeier, Marilyn
    Rohl, Matt
    Ryan, Sean
    Yadav, Divya
    Takacs, Noah
    Garcia-Fraley, Krystle
    Koso, Mensur
    Dikici, Engin
    Prevedello, Luciano M.
    Nguyen, Xuan V.
    DIAGNOSTICS, 2023, 13 (16)
  • [5] A New Era in Surgical Research: The Evolving Role of Artificial Intelligence
    Watanabe, Akie
    Wiseman, Sam M.
    AMERICAN JOURNAL OF SURGERY, 2023, 226 (06): : 923 - 925
  • [6] Current artificial intelligence research in Australia and New Zealand
    Weckert, J
    Davis, R
    AI APPLICATIONS, 1997, 11 (03): : 16 - 18
  • [7] Artificial Intelligence Mediated Neuroradiology
    Starke, Robert M.
    McCarthy, David
    Komotar, Ricardo J.
    Connolly, E. Sander
    NEUROSURGERY, 2019, 84 (03) : E136 - E137
  • [8] Artificial intelligence tools in clinical neuroradiology: essential medico-legal aspects
    Dennis M. Hedderich
    Christian Weisstanner
    Sofie Van Cauter
    Christian Federau
    Myriam Edjlali
    Alexander Radbruch
    Sara Gerke
    Sven Haller
    Neuroradiology, 2023, 65 : 1091 - 1099
  • [9] Artificial intelligence tools in clinical neuroradiology: essential medico-legal aspects
    Hedderich, Dennis M.
    Weisstanner, Christian
    Van Cauter, Sofie
    Federau, Christian
    Edjlali, Myriam
    Radbruch, Alexander
    Gerke, Sara
    Haller, Sven
    NEURORADIOLOGY, 2023, 65 (07) : 1091 - 1099
  • [10] Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology
    Fiani, Brian
    Pasko, Kory B. Dylan
    Sarhadi, Kasra
    Covarrubias, Claudia
    REVIEWS IN THE NEUROSCIENCES, 2022, 33 (04) : 383 - 395