FINE CLASSIFICATION OF POLSAR LAND COVER TYPES BASED ON MULTI-BAND

被引:0
|
作者
Han, Fangzhou [1 ]
Liu, Tianci [1 ]
Zhang, Lamei [1 ]
Fang, Shang [2 ]
机构
[1] Harbin Inst Technol, Dept Informat Engn, Harbin 150001, Peoples R China
[2] Univ Electrocommun, Dept Comp & Network Engn, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
关键词
multi-band PolSAR; polarimetric target decomposition method; scattering characteristic; PolSAR terrain surface classification;
D O I
10.1109/IGARSS52108.2023.10282348
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Considering the distinct scattering characteristics observed in diverse frequency bands for terrain surfaces, the utilization of complementary information from multi-band PolSAR data proves advantageous in effectively distinguishing targets that may present challenges when assessed in isolation within a single band. In this study, we employ the polarimetric target decomposition methods to investigate the scattering characteristics of representative targets within the C and L bands. Based on these findings, we construct a random forest fine classification model specifically tailored for different types of urban vegetation. Notably, experimental results demonstrate a noteworthy enhancement in classification accuracy following the integration of multi-band data.
引用
收藏
页码:8030 / 8033
页数:4
相关论文
共 50 条
  • [1] Decision Fusion at Pixel Level of Multi-Band Data for Land Cover Classification-A Review
    Papadopoulos, Spiros
    Koukiou, Georgia
    Anastassopoulos, Vassilis
    JOURNAL OF IMAGING, 2024, 10 (01)
  • [2] Land-cover classification using ASTER multi-band combinations based on wavelet fusion and SOM neural network
    Bagan, Hasi
    Wang, Qinxue
    Watanabe, Masataka
    Karneyarna, Satoshi
    Bao, Yuhai
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (03): : 333 - 342
  • [3] LAND COVER CLASSIFICATION FOR POLSAR IMAGES BASED ON MIXTURE MODELS AND MRF
    Liu, Xiyun
    Yin, Junjun
    Zhang, Jihua
    Yang, Jian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1711 - 1714
  • [4] PolSAR Image Land Cover Classification Based on Hierarchical Capsule Network
    Cheng, Jianda
    Zhang, Fan
    Xiang, Deliang
    Yin, Qiang
    Zhou, Yongsheng
    Wang, Wei
    REMOTE SENSING, 2021, 13 (16)
  • [5] Correlated Decision Fusion Accompanied with Quality Information on a Multi-Band Pixel Basis for Land Cover Classification
    Papadopoulos, Spiros
    Koukiou, Georgia
    Anastassopoulos, Vassilis
    JOURNAL OF IMAGING, 2024, 10 (04)
  • [6] Fusion of PolSAR and PolInSAR data for land cover classification
    Shimoni, M.
    Borghys, D.
    Heremans, R.
    Perneel, C.
    Acheroy, M.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (03) : 169 - 180
  • [7] Unsupervised Land Cover/Land Use Classification Using PolSAR Imagery Based on Scattering Similarity
    Chen, Qiang
    Kuang, Gangyao
    Li, Jonathan
    Sui, Lichun
    Li, Diangang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (03): : 1817 - 1825
  • [8] The Development of Multi-Band Equatorial Orbiting POLSAR Satellite Sensors
    Boerner, Wolfgang-M.
    2014 IEEE INTERNATIONAL CONFERENCE ON AEROSPACE ELECTRONICS AND REMOTE SENSING TECHNOLOGY (ICARES), 2014, : 127 - 131
  • [9] POLSAR LAND COVER CLASSIFICATION VIA TENSORIAL EMBEDDING METHODS
    Ren, Bo
    Hou, Biao
    Chanussot, Jocelyn
    Jiao, Changzhe
    Zhang, Xiangrong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1224 - 1227
  • [10] Dynamic Fractal Texture Analysis for PolSAR Land Cover Classification
    Yang, Rui
    Xu, Xin
    Xu, Zhaozhuo
    Dong, Hao
    Gui, Rong
    Pu, Fangling
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5991 - 6002