AdaLIO: Robust Adaptive LiDAR-Inertial Odometry in Degenerate Indoor Environments

被引:6
|
作者
Lim, Hyungtae [1 ]
Kim, Daebeom [1 ]
Kim, Beomsoo [1 ]
Myung, Hyun [1 ]
机构
[1] KAIST Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
关键词
LIO;
D O I
10.1109/UR57808.2023.10202252
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In recent years, the demand for mapping construction sites or buildings using light detection and ranging (LiDAR) sensors has been increased to model environments for efficient site management. However, it is observed that sometimes LiDAR-based approaches diverge in narrow and confined environments, such as spiral stairs and corridors, caused by fixed parameters regardless of the changes in the environments. That is, the parameters of LiDAR (-inertial) odometry are mostly set for open space; thus, if the same parameters suitable for the open space are applied in a corridor-like scene, it results in divergence of odometry methods, which is referred to as degeneracy. To tackle this degeneracy problem, we propose a robust LiDAR inertial odometry called AdaLIO, which employs an adaptive parameter setting strategy. To this end, we first check the degeneracy by checking whether the surroundings are corridor-like environments. If so, the parameters relevant to voxelization and normal vector estimation are adaptively changed to increase the number of correspondences. As verified in a public dataset, our proposed method showed promising performance in narrow and cramped environments, avoiding the degeneracy problem.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [1] Tightly Coupled LiDAR-Inertial Odometry and Mapping for Underground Environments
    Chen, Jianhong
    Wang, Hongwei
    Yang, Shan
    SENSORS, 2023, 23 (15)
  • [2] UnDeepLIO: Unsupervised Deep Lidar-Inertial Odometry
    Tu, Yiming
    Xie, Jin
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 189 - 202
  • [3] Lmapping: tightly-coupled LiDAR-inertial odometry and mapping for degraded environments
    Zou, Jingliang
    Shao, Liang
    Tang, Heshen
    Chen, Huangsong
    Bao, Haoran
    Pan, Xiaoming
    INTELLIGENT SERVICE ROBOTICS, 2023, 16 (05) : 583 - 597
  • [4] DY-LIO: Tightly Coupled LiDAR-Inertial Odometry for Dynamic Environments
    Zou, Jingliang
    Chen, Huangsong
    Shao, Liang
    Bao, Haoran
    Tang, Hesheng
    Xiang, Jiawei
    Liu, Jun
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 34756 - 34765
  • [5] Lmapping: tightly-coupled LiDAR-inertial odometry and mapping for degraded environments
    Jingliang Zou
    Liang Shao
    Heshen Tang
    Huangsong Chen
    Haoran Bao
    Xiaoming Pan
    Intelligent Service Robotics, 2023, 16 : 583 - 597
  • [6] A LiDAR-inertial Odometry with Principled Uncertainty Modeling
    Jiang, Binqian
    Shen, Shaojie
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 13292 - 13299
  • [7] Robust Lidar-Inertial Odometry with Ground Condition Perception and Optimization Algorithm for UGV
    Zhao, Zixu
    Zhang, Yucheng
    Shi, Jinglin
    Long, Long
    Lu, Zaiwang
    SENSORS, 2022, 22 (19)
  • [8] NV-LIOM: LiDAR-Inertial Odometry and Mapping Using Normal Vectors Towards Robust SLAM in Multifloor Environments
    Chung, Dongha
    Kim, Jinwhan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11): : 9375 - 9382
  • [9] FMCW-LIO: A Doppler LiDAR-Inertial Odometry
    Zhao, Mingle
    Wang, Jiahao
    Gao, Tianxiao
    Xu, Chengzhong
    Kong, Hui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5727 - 5734
  • [10] LA-LIO: Robust Localizability-Aware LiDAR-Inertial Odometry for Challenging Scenes
    Huang, Junjie
    Zhang, Yunzhou
    Xu, Qingdong
    Wu, Song
    Liu, Jun
    Wang, Guiyuan
    Liu, Wei
    2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2024), 2024, : 10145 - 10152