A H-type architecture for electric/hybrid-electric aircraft propulsion systems

被引:2
|
作者
Siddavatam, Anil Kumar Reddy [1 ]
Rajashekara, Kaushik [1 ]
Reddy, Ravi Prakash [1 ]
Huang, Hao [1 ]
Krishnamoorthy, Harish S. [1 ]
Wang, Fred [2 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[2] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA
关键词
aircraft; aircraft power systems; power electronics;
D O I
10.1049/els2.12065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an H-type electric/hybrid electric aircraft propulsion architecture is proposed to address the issues associated with the radial electric propulsion architecture. In a radial architecture, a fault on the main bus or failure of the generator leads to shut down of all the propulsion motors in that channel, thus increasing the burden on the remaining motors to maintain the power required by the aeroplane. As a result, it is necessary to oversize the motors for the purpose of compensating for the loss of other motors. To mitigate these issues, a new H-type architecture is introduced to isolate the particular faulty section while still maintaining power flow to the remaining healthy motors. The proposed architecture minimises the oversizing of various components in the system as compared to radial propulsion architecture. The sizing of components and the amount of overall mass reduction is discussed by using the proposed architecture. Typhoon Hardware in the Loop platform is used to validate the performance of both the architectures for faults at different locations, and the results are presented.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Electric/Hybrid-Electric Aircraft Propulsion Systems
    Wheeler, Patrick
    Sirimanna, Thusara Samith
    Bozhko, Serhiy
    Haran, Kiruba S.
    PROCEEDINGS OF THE IEEE, 2021, 109 (06) : 1115 - 1127
  • [2] Hybrid-Electric Propulsion for Aircraft
    Friedrich, C.
    Robertson, P. A.
    JOURNAL OF AIRCRAFT, 2015, 52 (01): : 176 - 189
  • [3] An Optimisation Tool for Hybrid-Electric Aircraft Propulsion Systems
    Walmsley, Robert
    Ahmed, Rishad
    Klumpner, Christian
    Saleh, Beeond M.
    2023 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, IEMDC, 2023,
  • [4] Voltage synchronisation for hybrid-electric aircraft propulsion systems
    Ibrahim, K.
    Sampath, S.
    Nalianda, D.
    AERONAUTICAL JOURNAL, 2021, 125 (1291): : 1611 - 1630
  • [5] Conceptual design of small aircraft with hybrid-electric propulsion systems
    Sziroczak, David
    Jankovics, Istvan
    Gal, Istvan
    Rohacs, Daniel
    ENERGY, 2020, 204 (204)
  • [6] Hybrid-electric propulsion integration in unmanned aircraft
    Sliwinski, Jacob
    Gardi, Alessandro
    Marino, Matthew
    Sabatini, Roberto
    ENERGY, 2017, 140 : 1407 - 1416
  • [7] System analysis of turbo-electric and hybrid-electric propulsion systems on a regional aircraft
    Gesell, Hendrik
    Wolters, Florian
    Plohr, Martin
    AERONAUTICAL JOURNAL, 2019, 123 (1268): : 1602 - 1617
  • [8] Exergy assessment comparison of conventional and hybrid-electric aircraft propulsion systems
    Affonso Jr, Walter
    Gandolfi, Ricardo
    da Silva, Roberto Gil A.
    de Oliveira Jr, Silvio
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (12)
  • [9] Rapid Electromagnetic Scaling Methodology for the Electric Propulsion of a Hybrid-Electric Aircraft
    Blanken, Norman
    Boe, Vivien
    Ponick, Bernd
    2023 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, IEMDC, 2023,
  • [10] Thermal management challenges in hybrid-electric propulsion aircraft
    Asli, Majid
    Koenig, Paul
    Sharma, Dikshant
    Pontika, Evangelia
    Huete, Jon
    Konda, Karunakar Reddy
    Mathiazhagan, Akilan
    Xie, Tianxiao
    Hoeschler, Klaus
    Laskaridis, Panagiotis
    PROGRESS IN AEROSPACE SCIENCES, 2024, 144