Numerical study on the impact of geometrical parameters and employing ternary hybrid nanofluid on the hydrothermal performance of mini-channel heat sink

被引:15
|
作者
Najafpour, Ahmad [1 ]
Hosseinzadeh, Khashayar [1 ,2 ]
Kermani, Javad Ranjbar [2 ]
Ranjbar, A. A. [1 ]
Ganji, D. D. [1 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Mech Engn, Babol, Iran
[2] Sharif Univ Technol, Dept Mech Engn, Tehran, Iran
关键词
Hydrothermal performance; Geometrical parameters; Mini-channel heat sink; Ternary hybrid nanofluid; Ternary hybrid nanoparticles; DESIGN;
D O I
10.1016/j.molliq.2023.123616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal management and temperature control of the electrical, electronic, and electrochemical devices during their operation have always been a challenge for proper performance and further development of them. In this regard, the utilization of liquid-cooled mini-channel heat sinks (MCHSs) and improving their capability for heat dissipation have been considered an effective method in past decades. The current study aims to improve the hydrothermal performance and temperature uniformity of MCHS. To this end, several channel configurations with novel geometrical cross sections, namely basic case and cases 1-4, are designed to investigate the influence of geometrical parameters on the mini-channel performance and temperature distribution inside the heat sink. Moreover, the hydrothermal improvement of each model in comparison to the basic case is computed through a parameter, namely performance evaluation criteria (PEC). Additionally, the impact of employing water-based ternary hybrid nanofluid (THNF) containing TiO2-MgO-GO ternary hybrid nanoparticles (THNPs) with various volume fractions and shape factors (SFs) instead of distilled water in the mini-channel with optimized hydro thermal behavior is thoroughly scrutinized. the outcomes endorse that in case 3 with trapezoidal geometry and PEC parameter equal to 1.2, the Nusselt number improves by 3.2 and 1.3 times, in comparison to case 2 (lowest values of Nusselt number) and base case, at Reynolds number of 831. Also, this is observed that hydraulic diameter directly impacts the pressure drop, and by decrement of that, the pressure drop heightens. However, case 2 with a rhombus geometry results in better temperature uniformity due to its larger effective heat transfer area. Furthermore, it is observed that the volume fraction and SF of THNP significantly affect the hydrothermal behavior of THNF inside the MCHS. For instance, by employing THNF with volume fractions of 0.03 % and 0.05 %, the average heat transfer coefficient (HTC) improves by 9 % and 17 %, pressure drop increases by 220 Pa and 370 Pa, and thermal resistance reduces by 9 % and 25 %, respectively, at Reynolds number of 1496, compared to distilled water. Further, THNF with a volume fraction of 0.05 %, reduces the maximum temperature of the heat sink by 3 K in comparison to distilled water, at a Reynolds number of 831. In addition, the utilization of disparate types of THNP with various SF, including spherical (sf = 3), platelets (sf = 5.7), blades (sf = 8.6), and lamina (sf = 16.1576) is examined and disclosed with volume fraction of 0.05 % and SF of 16.1576 instead of 3, HTC roughly elevates by 67 % and thermal resistance decreases by 47 %, at a Reynolds number of 831.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Hydrothermal performance of mini-channel heat sink using nanofluids/hybrid nanofluids: A numerical study
    Baig, Taha
    Tariq, Hussain Ahmed
    Anwar, Muhammad
    Shoukat, Ahmad Adnan
    Ali, Hafiz Muhammad
    Janjua, Muhammad Mansoor
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 4628 - 4646
  • [2] Numerical Study on Thermal Performance of Functionalized Graphene - Ethylene glycol/Water Nanofluid in Mini-channel Heat Sink
    Ponangi, Babu Rao
    Sakshi, B. M.
    Charan, R. S.
    Dave, Nand
    Krishna, V.
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [3] Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study
    Hussain Ahmed Tariq
    Muhammad Anwar
    Hafiz Muhammad Ali
    Jamal Ahmed
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 2011 - 2027
  • [4] Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study
    Tariq, Hussain Ahmed
    Anwar, Muhammad
    Ali, Hafiz Muhammad
    Ahmed, Jamal
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (03) : 2011 - 2027
  • [5] Multiphase numerical simulation in mini-channel heat exchangers using hybrid nanofluid
    Singh, Shiva
    Ghosh, Subrata Kumar
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (20) : 11255 - 11267
  • [6] Multiphase numerical simulation in mini-channel heat exchangers using hybrid nanofluid
    Shiva Singh
    Subrata Kumar Ghosh
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 11255 - 11267
  • [7] Experimental and numerical study on the hydrothermal performances of a mirror Y-shaped convergent mini-channel heat sink
    Qi, Peng
    Jing, Dalei
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 53
  • [8] CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink
    Moraveji, Mostafa Keshavarz
    Ardehali, Reza Mohammadi
    Ijam, Ali
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 40 : 58 - 66
  • [9] Effect of the fluid flow fragmentation on the hydrothermal performance enhancement of a serpentine mini-channel heat sink
    Jaffal, Hayder Mohammad
    Freegah, Basim
    Hussain, Ammar A.
    Hasan, Ala
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 24
  • [10] Numerical Investigation on Heat Transfer Enhancement in Serpentine Mini-Channel Heat Sink
    Ahmed, Mohammed A.
    Alabdaly, Ibrahim K.
    Hatem, Saad M.
    Hussein, Maher M.
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (01) : 183 - 190