Interdisciplinary Approach to Identify and Characterize COVID-19 Misinformation on Twitter: Mixed Methods Study

被引:1
|
作者
Tan, Iris Thiele Isip [1 ]
Cleofas, Jerome [2 ]
Solano, Geoffrey [3 ]
Pillejera, Jeanne Genevive [1 ]
Catapang, Jasper Kyle [4 ,5 ]
机构
[1] Univ Philippines Manila, Coll Med, Med Informat Unit, Manila, Philippines
[2] De La Salle Univ, Behav Sci Dept, Manila, Philippines
[3] Univ Philippines Manila, Math & Comp Sci Unit, Manila, Philippines
[4] Univ Birmingham, English Language & Linguist, Birmingham, England
[5] Univ Birmingham, English Language & Linguist, Birmingham B15 2TT, England
基金
美国国家卫生研究院;
关键词
COVID-19; misinformation; natural language processing; Twitter; biterm topic modeling;
D O I
10.2196/41134
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Studying COVID-19 misinformation on Twitter presents methodological challenges. A computational approach can analyze large data sets, but it is limited when interpreting context. A qualitative approach allows for a deeper analysis of content, but it is labor-intensive and feasible only for smaller data sets. Objective: We aimed to identify and characterize tweets containing COVID-19 misinformation.Methods: Tweets geolocated to the Philippines (January 1 to March 21, 2020) containing the words coronavirus, covid, and ncov were mined using the GetOldTweets3 Python library. This primary corpus (N=12,631) was subjected to biterm topic modeling. Key informant interviews were conducted to elicit examples of COVID-19 misinformation and determine keywords. Using NVivo (QSR International) and a combination of word frequency and text search using key informant interview keywords, subcorpus A (n=5881) was constituted and manually coded to identify misinformation. Constant comparative, iterative, and consensual analyses were used to further characterize these tweets. Tweets containing key informant interview keywords were extracted from the primary corpus and processed to constitute subcorpus B (n=4634), of which 506 tweets were manually labeled as misinformation. This training set was subjected to natural language processing to identify tweets with misinformation in the primary corpus. These tweets were further manually coded to confirm labeling.Results: Biterm topic modeling of the primary corpus revealed the following topics: uncertainty, lawmaker's response, safety measures, testing, loved ones, health standards, panic buying, tragedies other than COVID-19, economy, COVID-19 statistics, precautions, health measures, international issues, adherence to guidelines, and frontliners. These were categorized into 4 major topics: nature of COVID-19, contexts and consequences, people and agents of COVID-19, and COVID-19 prevention and management. Manual coding of subcorpus A identified 398 tweets with misinformation in the following formats: misleading content (n=179), satire and/or parody (n=77), false connection (n=53), conspiracy (n=47), and false context (n=42). The discursive strategies identified were humor (n=109), fear mongering (n=67), anger and disgust (n=59), political commentary (n=59), performing credibility (n=45), overpositivity (n=32), and marketing (n=27). Natural language processing identified 165 tweets with misinformation. However, a manual review showed that 69.7% (115/165) of tweets did not contain misinformation.Conclusions: An interdisciplinary approach was used to identify tweets with COVID-19 misinformation. Natural language processing mislabeled tweets, likely due to tweets written in Filipino or a combination of the Filipino and English languages. Identifying the formats and discursive strategies of tweets with misinformation required iterative, manual, and emergent coding by human coders with experiential and cultural knowledge of Twitter. An interdisciplinary team composed of experts in health, health informatics, social science, and computer science combined computational and qualitative methods to gain a better understanding of COVID-19 misinformation on Twitter.(JMIR Form Res 2023;7:e41134) doi: 10.2196/41134
引用
收藏
页数:15
相关论文
共 50 条
  • [1] An exploratory study of COVID-19 misinformation on Twitter
    Shahi G.K.
    Dirkson A.
    Majchrzak T.A.
    Online Social Networks and Media, 2021, 22
  • [2] Unpacking Misinformation Amid the COVID-19 Pandemic: A Mixed Methods Study
    Sajjad, Priya Fatima
    Haroon, Rukhshan
    Naeem, Ayesha
    Uswah-E-Fatima
    Uzmi, Zartash Afzal
    IEEE INTERNET COMPUTING, 2022, 26 (02) : 7 - 18
  • [3] Are Mutated Misinformation More Contagious? A Case Study of COVID-19 Misinformation on Twitter
    Yan, Muheng
    Lin, Yu-Ru
    Chung, Wen-Ting
    PROCEEDINGS OF THE 14TH ACM WEB SCIENCE CONFERENCE, WEBSCI 2022, 2022, : 336 - 347
  • [4] Misinformation Dissemination in Twitter in the COVID-19 Era
    Krittanawong, Chayakrit
    Narasimhan, Bharat
    Virk, Hafeez Ul Hassan
    Narasimhan, Harish
    Hahn, Joshua
    Wang, Zhen
    Tang, W. H. Wilson
    AMERICAN JOURNAL OF MEDICINE, 2020, 133 (12): : 1367 - 1369
  • [5] Twitter Analysis of Covid-19 Misinformation in Spain
    Saby, Diego
    Philippe, Olivier
    Buslon, Nataly
    del Valle, Javier
    Puig, Oriol
    Salaverria, Ramon
    Jose Rementeria, Maria
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 267 - 278
  • [6] One Year of COVID-19 Vaccine Misinformation on Twitter: Longitudinal Study
    Pierri, Francesco
    DeVerna, Matthew R.
    Yang, Kai-Cheng
    Axelrod, David
    Bryden, John
    Menczer, Filippo
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [7] Machine Learning in Detecting COVID-19 Misinformation on Twitter
    Alenezi, Mohammed N.
    Alqenaei, Zainab M.
    FUTURE INTERNET, 2021, 13 (10)
  • [8] CMTA: COVID-19 Misinformation Multilingual Analysis on Twitter
    Pranesh, Raj Ratn
    Farokhnejad, Mehrdad
    Shekhar, Ambesh
    Vargas-Solar, Genoveva
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, 2021, : 270 - 283
  • [9] Transformers for COVID-19 Misinformation Detection on Twitter: A South African Case Study
    Strydom, Irene Francesca
    Grobler, Jacomine
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT I, 2023, 13810 : 197 - 210
  • [10] Investigation of COVID-19 Misinformation in Arabic on Twitter: Content Analysis
    Al-Rawi, Ahmed
    Fakida, Abdelrahman
    Grounds, Kelly
    JMIR INFODEMIOLOGY, 2022, 2 (02):