Multiplicity result for a (p(x),q(x))-Laplacian-like system with indefinite weights

被引:0
|
作者
Kefi, Khaled [1 ,2 ]
Nefzi, Chaima [3 ]
机构
[1] Northern Border Univ, Fac Comp Sci & Informat Technol, Rafha, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci, Tunis 1060, Tunisia
[3] Univ Tunis El Manar, Fac Sci, Math Dept, Tunis 1060, Tunisia
关键词
critical theorem; generalized Sobolev space; variable exponent; VARIABLE EXPONENT; EXISTENCE;
D O I
10.1515/gmj-2023-2107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under some suitable conditions, we show that at least three weak solutions exist for a system of differential equations involving the ( p ( x ) , q ( x ) ) {(p(x),q(x))} Laplacian-like with indefinite weights. The proof is related to the Bonanno-Marano critical theorem (Appl. Anal. 89 (2010), 1-10).
引用
收藏
页码:663 / 671
页数:9
相关论文
共 50 条
  • [1] The Existence and Multiplicity of Solutions for p(x)-Laplacian-Like Neumann Problems
    Chu, Changmu
    Tang, Ying
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [2] INFINITELY MANY SOLUTIONS FOR (p(x), q(x))-LAPLACIAN-LIKE SYSTEMS
    Heidari, Samira
    Razani, Abdolrahman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (01): : 51 - 62
  • [3] Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators
    M. Manuela Rodrigues
    Mediterranean Journal of Mathematics, 2012, 9 : 211 - 223
  • [4] Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators
    Manuela Rodrigues, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (01) : 211 - 223
  • [5] Infinitely Many Solutions for p(x)-Laplacian-Like Neumann Problems with Indefinite Weight
    Zhou Qing-Mei
    Wang Ke-Qi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [6] Infinitely Many Solutions for p(x)-Laplacian-Like Neumann Problems with Indefinite Weight
    Zhou Qing-Mei
    Wang Ke-Qi
    Mediterranean Journal of Mathematics, 2019, 16
  • [7] Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The p(x)-Laplacian-like Operator
    Boukhsas, A.
    Karim, B.
    Zerouali, A.
    Chakrone, O.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [8] Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces
    Mohamed El Ouaarabi
    Chakir Allalou
    Said Melliani
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1337 - 1350
  • [9] A multiplicity result for p(x)-Laplacian problem in RN
    Fu, Yongqiang
    Zhang, Xia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2261 - 2269
  • [10] Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1337 - 1350