A Meta-Learning Enabled Method for False Data Injection Attack Detection in Smart Grid

被引:0
|
作者
Chen, Zihan [1 ]
Lin, Hanxing [1 ]
Chen, Wenxin [1 ]
Chen, Jinyu [1 ]
Chen, Han [1 ]
Chen, Wanqing [1 ]
Chen, Simin [1 ]
Chen, Jinchun [1 ]
机构
[1] State Grid Fujian Elect Power Co, Power Econ Res Inst, Fuzhou, Peoples R China
关键词
cyber attack; false data injection attack detection; meta-learning; fast learning ability; REAL-TIME DETECTION; NETWORK;
D O I
10.1109/AEEES56888.2023.10114329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The deep coupling of the power system network layer and the physical layer makes the risk of the power system being subjected to cyber attack constantly rise. Effective cyber attack detection plays an important role in the safe and stable operation of power system. However, due to the limited data available, the problem of cyber attack diagnosis in power system has a weak generalization. To this end, this paper proposes a model-agnostic meta-learning (MAML)-based false data injection attack (FDIA) diagnosis method with limited samples for power systems. More specifically, a basic-learner is first trained to learn the attributes of a series of related FDIA diagnostic tasks. In this training stage, the proposed model can obtain the meta-knowledge from the learning experience of these priori tasks. This technique makes the model have fast adaptation ability to unseen tasks by utilizing only limited data. Then, a meta-learner with fast learning ability is obtained. In addition, two learnable learning rates are applied in basic and meta-learner, which makes the model to converge faster compared with the fixed learning rate. The performance of the proposed FDIA detection model is evaluated on the New England 10-machine 39-bus test system. Experimental results show that the proposed can achieve promising performance with limited data under different scenarios, which can well prove the effectiveness of the proposed model.
引用
收藏
页码:1124 / 1129
页数:6
相关论文
共 50 条
  • [1] False data injection attack in smart grid: Attack model and reinforcement learning-based detection method
    Lin, Xixiang
    An, Dou
    Cui, Feifei
    Zhang, Feiye
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [2] Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning
    Niu, Xiangyu
    Li, Jiangnan
    Sun, Jinyuan
    Tomsovic, Kevin
    2019 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2019,
  • [3] Stacked Autoencoder Framework of False Data Injection Attack Detection in Smart Grid
    Chen, Liang
    Gu, Songlin
    Wang, Ying
    Yang, Yang
    Li, Yang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [4] A locational false data injection attack detection method in smart grid based on adversarial variational autoencoders
    Wang, Yufeng
    Zhou, Yangming
    Ma, Jianhua
    Jin, Qun
    APPLIED SOFT COMPUTING, 2024, 151
  • [5] Statistical Structure Learning of Smart Grid for Detection of False Data Injection
    Sedghi, Hanie
    Jonckheere, Edmond
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [6] Deep learning based method for false data injection attack detection in AC smart islands
    Dehghani, Moslem
    Kavousi-Fard, Abdollah
    Dabbaghjamanesh, Morteza
    Avatefipour, Omid
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (24) : 5756 - 5765
  • [7] Deep learning based method for false data injection attack detection in AC smart islands
    Dehghani, Moslem
    Kavousi-Fard, Abdollah
    Dabbaghjamanesh, Morteza
    Avatefipour, Omid
    IET Generation, Transmission and Distribution, 2020, 14 (24): : 5816 - 5822
  • [8] Deep learning based method for false data injection attack detection in AC smart islands
    Dehghani, Moslem
    Kavousi-Fard, Abdollah
    Dabbaghjamanesh, Morteza
    Avatefipour, Omid
    IET Generation, Transmission and Distribution, 2020, 14 (24): : 5816 - 5822
  • [9] False Data Injection Attack Detection in Smart Grid Using Energy Consumption Forecasting
    Mahi-al-rashid, Abrar
    Hossain, Fahmid
    Anwar, Adnan
    Azam, Sami
    ENERGIES, 2022, 15 (13)
  • [10] Locational Detection of the False Data Injection Attack in a Smart Grid: A Multilabel Classification Approach
    Wang, Shuoyao
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (09): : 8218 - 8227