Using AI and BES/MFC to decrease the prediction time of BOD5 measurement

被引:3
|
作者
Medvedev, Ivan [1 ]
Kornaukhova, Mariya [1 ]
Galazis, Christoforos [2 ]
Lorant, Balint [3 ]
Tardy, Gabor Mark [3 ]
Losev, Alexander [1 ]
Goryanin, Igor [4 ,5 ]
机构
[1] Volgograd State Univ, Volgograd, Russia
[2] Imperial Coll London, London, England
[3] Budapest Univ Technol & Econ, Budapest, Hungary
[4] Univ Edinburgh, Edinburgh, Scotland
[5] Okinawa Inst Sci & Technol, Okinawa, Japan
关键词
Neural network; Biochemical Oxygen demand; Biosensor; Microbial fuel cell; MICROBIAL FUEL-CELLS;
D O I
10.1007/s10661-023-11576-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biochemical oxygen demand (BOD) is one of the most important water/wastewater quality parameters. BOD5 is the amount of oxygen consumed in 5 days by microorganisms that oxidize biodegradable organic materials in an aerobic biochemical manner. The primary objective of this research is to apply microbial fuel cells (MFCs) to reduce the time requirement of BOD5 measurements. An artificial neural network (ANN) has been created, and the predictions we obtained for BOD5 measurements were carried out within 6-24 h with an average error of 7%. The outcomes demonstrated the viability of our AI MFC/BES BOD5 sensor in real-life scenarios.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Using AI and BES/MFC to decrease the prediction time of BOD5 measurement
    Ivan Medvedev
    Mariya Kornaukhova
    Christoforos Galazis
    Bálint Lóránt
    Gábor Márk Tardy
    Alexander Losev
    Igor Goryanin
    Environmental Monitoring and Assessment, 2023, 195
  • [2] BOD5 Prediction Using machine learning methods
    Ooi, Kai Sheng
    Chen, Zhiyuan
    Poh, Phaik Eong
    Cui, Jian
    WATER SUPPLY, 2022, 22 (01) : 1168 - 1182
  • [3] Regression modeling for rapid prediction of wastewater BOD5
    Qasaimeh, Ahmad
    Al-Ghazawi, Ziad
    DESALINATION AND WATER TREATMENT, 2020, 201 : 165 - 172
  • [4] A study on the relationship between BOD5 and COD in a coastal seawater environment with a rapid BOD measurement system
    Jin, X. L.
    Jing, M.
    Chen, X.
    Zhuang, Z. X.
    Wang, X. R.
    Lee, Frank S. C.
    WATER SCIENCE AND TECHNOLOGY, 2010, 61 (06) : 1499 - 1503
  • [5] A study on the relationship between BOD5 and COD in coastal seawater environment with a rapid BOD measurement system
    Jin, X. L.
    Jing, M.
    Chen, X.
    Zhuang, Z. X.
    Wang, X. R.
    Lee, Frank S. C.
    WATER SCIENCE AND TECHNOLOGY, 2009, 60 (12) : 3219 - 3223
  • [6] Comparison of models for estimation of measurement uncertainties. Determination of BOD5 in wastewaters using a manometric method
    Maria Ascensão Trancoso
    Sandra Catarina S. Calisto
    Accreditation and Quality Assurance, 2008, 13 : 19 - 28
  • [7] A SIMPLE ALGORITHM FOR ONLINE PREDICTION OF BOD5 BY A MICROPROCESSOR-BASED SYSTEM
    RAVIV, R
    BENYAAKOV, S
    BIOTECHNOLOGY AND BIOENGINEERING, 1984, 26 (10) : 1239 - 1244
  • [8] Comparison of models for estimation of measurement uncertainties.: Determination of BOD5 in wastewaters using a manometric method
    Trancoso, Maria Ascensao
    Calisto, Sandra Catarina S.
    ACCREDITATION AND QUALITY ASSURANCE, 2008, 13 (01) : 19 - 28
  • [9] Active and online prediction of BOD5 in river systems using reduced-order support vector machine
    Roohollah Noori
    Abdulreza Karbassi
    Khosro Ashrafi
    Mojtaba Ardestani
    Naser Mehrdadi
    Gholam-Reza Nabi Bidhendi
    Environmental Earth Sciences, 2012, 67 : 141 - 149
  • [10] Prediction of BOD5 content of the inflow to the treatment plant using different methods of black box - the case study
    Gawdzik, Alicja
    Gawdzik, Jaroslaw
    Gawdzik, Barbara
    Gawdzik, Andrzej
    Rybotycki, Marcin
    DESALINATION AND WATER TREATMENT, 2020, 196 : 58 - 66