Improving nitrogen use efficiency (NUE) under salt stress has become crucial for rice as it is increasingly facing two major environmental constraints: excessive nitrogen fertilization and soil salinization. However, the interaction between salinity and N levels is very complex and has not yet been considered from the perspective of reduced nitrogen input. We conducted a hydroponic experiment at the early tillering stage on the Yoshida solution to evaluate the impact of rising NaCl and decreasing N application on NUE of four rice cultivars cultivated under three NaCl (0, 56, and 113 mM) and four N (2.86, 1.43, 0.72, and 0.36 mM) concentrations. After 4 weeks, physiological NUE (pNUE), absorption NUE (aNUE), agronomical NUE (agNUE), N transport efficiency (NTE), and physiological traits were evaluated. Significant interactions between N and NaCl-applied concentrations were found in all measured parameters. In all cultivars, increasing the NaCl-applied concentration markedly decreased aNUE and agNUE. For each NaCl treatment, lowering the N applied sharply increased aNUE and agNUE, and this effect was stronger when the NaCl applied was higher. The effect of N lowering on pNUE depended on the NaCl treatment: it enhanced pNUE in the absence of NaCl but had no influence under the highest NaCl-applied concentration. Cultivars largely differed in response to NaCl. The aNUE-but not pNUE-differed between salt-tolerant and salt-sensitive cultivars: aNUE markedly decreased with NaCl concentration in the most salt-sensitive cultivar, whereas it was the highest at the intermediate NaCl concentration in the most salt-tolerant cultivar, especially under low N levels. This finding suggests that under salt conditions, the use of salt-tolerant rice genotypes combined with reducing N level application is necessary to improve NUE. The study of NUE in rice should be focused on the improvement of aNUE with a strong emphasis on the salt tolerance of cultivars.