3D Bioprinting Strategies for Articular Cartilage Tissue Engineering

被引:6
|
作者
Park, Do Young [1 ,2 ]
Kim, Seon-Hwa [3 ]
Park, Sang-Hyug [1 ,3 ]
Jang, Ji Su [1 ,4 ]
Yoo, James J. [1 ]
Lee, Sang Jin [1 ]
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Wake Forest Inst Regenerat Med, Winston Salem, NC 27101 USA
[2] Ajou Univ Hosp, Dept Orthoped Surg, Suwon, South Korea
[3] Pukyong Natl Univ, Dept Indu Convergence Bion Engn 4 0, Busan, South Korea
[4] Hallym Univ, Coll Med, Dept Anesthesiol & Pain Med, Chunchon, South Korea
基金
美国国家科学基金会; 美国国家卫生研究院; 新加坡国家研究基金会;
关键词
Articular cartilage; Osteoarthritis; Bioprinting; Bioinks; Tissue engineering; Clinical translation; MESENCHYMAL STEM-CELLS; AUTOLOGOUS CHONDROCYTE IMPLANTATION; IN-VIVO CHONDROGENESIS; NASAL CHONDROCYTES; UMBILICAL-CORD; DIFFERENTIATION; HYDROGEL; DEFECTS; REPAIR; KNEE;
D O I
10.1007/s10439-023-03236-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.
引用
收藏
页码:1883 / 1893
页数:11
相关论文
共 50 条
  • [1] 3D Bioprinting: New Directions in Articular Cartilage Tissue Engineering
    O'Connell, Grace
    Garcia, Jeanette
    Amir, Jamali
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (11): : 2657 - 2668
  • [2] 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering
    Huang, Jianghong
    Xiong, Jianyi
    Wang, Daping
    Zhang, Jun
    Yang, Lei
    Sun, Shuqing
    Liang, Yujie
    GELS, 2021, 7 (03)
  • [3] 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering
    Daly, Andrew C.
    Freeman, Fiona E.
    Gonzalez-Fernandez, Tomas
    Critchley, Susan E.
    Nulty, Jessica
    Kelly, Daniel J.
    ADVANCED HEALTHCARE MATERIALS, 2017, 6 (22)
  • [4] Translational Application of 3D Bioprinting for Cartilage Tissue Engineering
    McGivern, Sophie
    Boutouil, Halima
    Al-Kharusi, Ghayadah
    Little, Suzanne
    Dunne, Nicholas J.
    Levingstone, Tanya J.
    BIOENGINEERING-BASEL, 2021, 8 (10):
  • [5] Application and development of 3D bioprinting in cartilage tissue engineering
    Li, Mingyang
    Sun, Daocen
    Zhang, Juan
    Wang, Yanmei
    Wei, Qinghua
    Wang, Yanen
    BIOMATERIALS SCIENCE, 2022, 10 (19) : 5430 - 5458
  • [6] A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering
    Gorronogoitia, Izar
    Urtaza, Uzuri
    Zubiarrain-Laserna, Ana
    Alonso-Varona, Ana
    Zaldua, Ane Miren
    POLYMERS, 2022, 14 (02)
  • [7] Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering
    Zhang, Hongji
    Zhou, Zheyuan
    Zhang, Fengjie
    Wan, Chao
    GELS, 2024, 10 (07)
  • [8] Application of 3D Bioprinting in Cartilage Tissue
    Wang, Yi
    INTERNATIONAL CONFERENCE ON FRONTIERS OF BIOLOGICAL SCIENCES AND ENGINEERING (FBSE 2018), 2019, 2058
  • [9] 3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering
    Rhee, Stephanie
    Puetzer, Jennifer L.
    Mason, Brooke N.
    Reinhart-King, Cynthia A.
    Bonassar, Lawrence J.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2 (10): : 1800 - 1805
  • [10] Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering
    Abdollahiyan, Parinaz
    Oroojalian, Fatemeh
    Mokhtarzadeh, Ahad
    de la Guardia, Miguel
    BIOTECHNOLOGY JOURNAL, 2020, 15 (12)