Nonlinear full information and moving horizon estimation: Robust global asymptotic stability

被引:13
|
作者
Knuefer, Sven [1 ,2 ]
Mueller, Matthias A. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Automat Control, D-30167 Hannover, Germany
[2] Robert Bosch GmbH, Driver Assistance, D-70469 Stuttgart, Germany
关键词
Moving horizon estimation; Full information estimation; Robust stability; Nonlinear systems; Detectability; DISCRETE-TIME-SYSTEMS; STATE ESTIMATION; DETECTABILITY;
D O I
10.1016/j.automatica.2022.110603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose time-discounted schemes for full information estimation (FIE) and moving horizon estimation (MHE) that are robustly globally asymptotically stable (RGAS). We consider general nonlinear system dynamics with nonlinear process and output disturbances that are a priori unknown. For FIE being RGAS, our only assumptions are that the system is time-discounted incrementally input- output-to-state-stable (i-IOSS) and that the time-discounted FIE cost function is compatible with the i-IOSS estimate. Since for i-IOSS systems such a compatible cost function can always be designed, we show that i-IOSS is sufficient for the existence of RGAS observers. Based on the stability result for FIE, we provide sufficient conditions such that the induced MHE scheme is RGAS as well for sufficiently large horizons. For both schemes, we can guarantee convergence of the estimation error in case the disturbances converge to zero without incorporating a priori knowledge. Finally, we present explicit converge rates and show how to verify that the MHE results approach the FIE results for increasing horizons.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Robust Global Exponential Stability for Moving Horizon Estimation
    Knuefer, Sven
    Mueller, Matthias A.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3477 - 3482
  • [2] Generic Stability Implication From Full Information Estimation to Moving-Horizon Estimation
    Hu, Wuhua
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 1164 - 1170
  • [3] Robust Moving Horizon State Estimation for Nonlinear Systems
    Liu, Jinfeng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 253 - 258
  • [4] A Lyapunov Function for Robust Stability of Moving Horizon Estimation
    Schiller, Julian D.
    Muntwiler, Simon
    Koehler, Johannes
    Zeilinger, Melanie N.
    Mueller, Matthias A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7466 - 7481
  • [5] ROBUST STABILITY OF FULL INFORMATION ESTIMATION
    Allan, Douglas A.
    Rawlings, James B.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 3472 - 3497
  • [6] Robust Stability of Gaussian Process Based Moving Horizon Estimation
    Wolff, Tobias M.
    Lopez, Victor G.
    Mueller, Matthias A.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4087 - 4093
  • [7] Robust Stability of Moving Horizon Estimation Under Bounded Disturbances
    Ji, Luo
    Rawlings, James B.
    Hu, Wuhua
    Wynn, Andrew
    Diehl, Moritz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3509 - 3514
  • [8] Stability of a Nonlinear Moving Horizon Estimator with Pre-Estimation
    Suwantong, Rata
    Bertrand, Sylvain
    Dumur, Didier
    Beauvois, Dominique
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 5688 - 5693
  • [9] Robust stability of moving horizon estimation for continuous-time systems
    Schiller, Julian D.
    Mueller, Matthias A.
    AT-AUTOMATISIERUNGSTECHNIK, 2024, 72 (02) : 120 - 133
  • [10] A Simple Suboptimal Moving Horizon Estimation Scheme With Guaranteed Robust Stability
    Schiller, Julian D.
    Wu, Boyang
    Muller, Matthias A.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 19 - 24