Forecasting PM2.5 Concentration in India Using a Cluster Based Hybrid Graph Neural Network Approach

被引:6
|
作者
Ejurothu, Pavan Sai Santhosh [1 ]
Mandal, Subhojit [1 ]
Thakur, Mainak [1 ]
机构
[1] Indian Inst Informat Technol, Comp Sci & Engn Dept, Gnan Marg, Sricity 517646, Andhra Pradesh, India
关键词
Air pollution; PM2.5; forecasting; Graph neural network; Cluster based graph neural network; Clustering; AIR-QUALITY; PARTICULATE MATTER; PM10; VARIABILITY; PREDICTION; IMPACT; RANGE;
D O I
10.1007/s13143-022-00291-4
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Air pollution modeling and forecasting over a national level scale for a country as large as India is a very challenging task due to the large amount of data involved in a limited spatial frequency. Often the air pollution and pollutant dispersion process depend on underlying meteorological conditions. Recently, Graph Neural Networks emerged as an effective deep learning model for discovering spatial patterns for various classification and regression tasks. This study proposes to employ a cluster-based Local Hybrid-Graph Neural Network (HGNN) methodology instead of using a single global Graph Neural Network for monitoring station-wise multi-step PM2.5 concentration forecasting across India's states. This methodology respects sudden changes in PM2.5 concentration due to the local meteorological variations. However, the local Hybrid GNN models consist of two parts: a spatio-temporal unit containing a Graph Neural Network layer along with a Gated Recurrent Unit layer to model the influence of wind speed and other meteorological variables on PM2.5 concentration. The other part is a station wise feature extraction unit to extract station-wise meteorological feature impact on PM2.5 concentration, along with the temporal dependency between historical records. The results from the two units are fused in step-wise manner for multi-step PM2.5 forecasting. The proposed methodology was used to develop separate PM2.5 concentration forecasting models, +24, +48 and +72 hours ahead. Subsequently, a detailed analysis is carried out to unfold the advantages of the proposed methodology. Results demonstrate the proposed models perform better than the state-of-the-art with significantly lesser computation time.
引用
收藏
页码:545 / 561
页数:17
相关论文
共 50 条
  • [1] Forecasting PM2.5 Concentration in India Using a Cluster Based Hybrid Graph Neural Network Approach
    Pavan Sai Santhosh Ejurothu
    Subhojit Mandal
    Mainak Thakur
    Asia-Pacific Journal of Atmospheric Sciences, 2023, 59 : 545 - 561
  • [2] A city-based PM2.5 forecasting framework using Spatially Attentive Cluster-based Graph Neural Network model
    Mandal, Subhojit
    Thakur, Mainak
    JOURNAL OF CLEANER PRODUCTION, 2023, 405
  • [3] An Empirical Study of PM2.5 Forecasting Using Neural Network
    Mahajan, Sachit
    Chen, Ling-Jyh
    Tsai, Tzu-Chieh
    2017 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTED, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2017,
  • [4] Spatiotemporal PM2.5 forecasting via dynamic geographical Graph Neural Network
    Zhao, Qin
    Liu, Jiajun
    Yang, Xinwen
    Qi, Hongda
    Lian, Jie
    ENVIRONMENTAL MODELLING & SOFTWARE, 2025, 186
  • [5] An adaptive spatio-temporal neural network for PM2.5 concentration forecasting
    Zhang, Xiaoxia
    Li, Qixiong
    Liang, Dong
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14483 - 14510
  • [6] An adaptive spatio-temporal neural network for PM2.5 concentration forecasting
    Xiaoxia Zhang
    Qixiong Li
    Dong Liang
    Artificial Intelligence Review, 2023, 56 : 14483 - 14510
  • [7] Research on PM2.5 concentration prediction algorithm based on graph convolutional neural network model
    Liu, Xiangyu
    Ren, Ge
    Guo, Jiashuo
    Hu, Yuxin
    Lin, Hong
    Proceedings of SPIE - The International Society for Optical Engineering, 2024, 13291
  • [8] A new hybrid deep neural network for multiple sites PM2.5 forecasting
    Teng, Mengfan
    Li, Siwei
    Yang, Jie
    Chen, Jiarui
    Fan, Chunying
    Ding, Yu
    JOURNAL OF CLEANER PRODUCTION, 2024, 473
  • [9] A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory
    Qi, Yanlin
    Li, Qi
    Karimian, Hamed
    Liu, Di
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 664 : 1 - 10
  • [10] A Neural Network Based Model for PM2.5 Air Pollutant Forecasting
    Oprea, Mihaela
    Popescu, Marian
    Mihalache, Sanda Florentina
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 776 - 781