GLOBAL STABILITY OF ALMOST PERIODIC SOLUTIONS IN POPULATION DYNAMICS

被引:0
|
作者
Diaz-Marin, Homero G. [1 ]
Osuna, Osvaldo [2 ]
机构
[1] Univ Michoacana, Fac Ciencias Fis Matemat, Edif Alfa,Ciudad Univ, Morelia 58040, Michoacan, Mexico
[2] Univ Michoacana, Inst Fis & Matemat, Edif C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico
关键词
Global stability; population dynamics; almost periodic functions;
D O I
10.1090/qam/1636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study first order differential equations with continuous almost periodic time dependence. We propose existence and global stability criteria of almost periodic solutions. Our results are specially useful in the study of one species population dynamics, such as logistic models with almost periodic parameters. Almost periodic time dependence also provides an explanation for oscillatory solutions in models of hematopoiesis disease dynamics.
引用
收藏
页码:615 / 632
页数:18
相关论文
共 50 条