Quantum error correction in the black hole interior

被引:10
|
作者
Balasubramanian, Vijay [1 ,2 ,3 ]
Kar, Arjun [4 ]
Li, Cathy [1 ]
Parrikar, Onkar [5 ]
机构
[1] Univ Penn, David Rittenhouse Lab, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Vrije Univ Brussel VUB, Theoret Natuurkunde, Pleinlaan 2, B-1050 Brussels, Belgium
[3] Int Solvay Inst, Pleinlaan 2, B-1050 Brussels, Belgium
[4] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[5] Tata Inst Fundamental Res, Dept Theoret Phys, Mumbai 400005, India
关键词
2D Gravity; AdS-CFT Correspondence; Black Holes;
D O I
10.1007/JHEP07(2023)189
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the quantum error correction properties of the black hole interior in a toy model for an evaporating black hole: Jackiw-Teitelboim gravity entangled with a non-gravitational bath. After the Page time, the black hole interior degrees of freedom in this system are encoded in the bath Hilbert space. We use the gravitational path integral to show that the interior density matrix is correctable against the action of quantum operations on the bath which (i) do not have prior access to details of the black hole microstates, and (ii) do not have a large, negative coherent information with respect to the maximally mixed state on the bath, with the lower bound controlled by the black hole entropy and code subspace dimension. Thus, the encoding of the black hole interior in the radiation is robust against generic, low-rank quantum operations. For erasure errors, gravity comes within an O(1) distance of saturating the Singleton bound on the tolerance of error correcting codes. For typical errors in the bath to corrupt the interior, they must have a rank that is a large multiple of the bath Hilbert space dimension, with the precise coefficient set by the black hole entropy and code subspace dimension.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] Quantum error correction in the black hole interior
    Vijay Balasubramanian
    Arjun Kar
    Cathy Li
    Onkar Parrikar
    Journal of High Energy Physics, 2023
  • [2] Black hole entanglement and quantum error correction
    Erik Verlinde
    Herman Verlinde
    Journal of High Energy Physics, 2013
  • [3] Black hole entanglement and quantum error correction
    Verlinde, Erik
    Verlinde, Herman
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [4] Quantum state of the black hole interior
    Brustein, Ram
    Medved, A. J. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [5] Black Hole Interior in Quantum Gravity
    Nomura, Yasunori
    Sanches, Fabio
    Weinberg, Sean J.
    PHYSICAL REVIEW LETTERS, 2015, 114 (20)
  • [6] Quantum state of the black hole interior
    Ram Brustein
    A. J. M. Medved
    Journal of High Energy Physics, 2015
  • [7] Black hole quantum tunnelling and black hole entropy correction
    Zhang, Jingyi
    PHYSICS LETTERS B, 2008, 668 (05) : 353 - 356
  • [8] Quantum dynamics of the black hole interior in loop quantum cosmology
    Sartini, Francesco
    Geiller, Marc
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [9] Black Hole Interior from Loop Quantum Gravity
    Modesto, Leonardo
    ADVANCES IN HIGH ENERGY PHYSICS, 2008, 2008
  • [10] Quantum gravity predictions for black hole interior geometry
    Alesci, Emanuele
    Bahrami, Sina
    Pranzetti, Daniele
    PHYSICS LETTERS B, 2019, 797