Effect of zirconia in the corrosion behavior of intermetallic Mo3Si alloy in molten salts mixture of NaNO3 and KNO3

被引:1
|
作者
Brito-Hernadez, Daniel [1 ]
Rosales-Cadena, Isai [1 ]
Gonzalez-Rodriguez, Jose G. [1 ]
Uruchurtu-Chavarin, Jorge [1 ]
Guardian-Tapia, Rene [1 ]
Vera-Dimas, Jose G. [2 ]
Lopez-Sesenes, Roy [2 ]
机构
[1] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas CIICAp, Cuernavaca, Morelos, Mexico
[2] Univ Autonoma Estado Morelos, Fac Ciencias Quim & Ingn FCQeI, Cuernavaca, Morelos, Mexico
来源
关键词
corrosion; Mo3Si-alloy; molten nitrates; solar salts; zirconia effect; OXIDATION; MOSI2; STEEL; FILMS;
D O I
10.1002/maco.202213223
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The corrosion effect of zirconia addition, 1, 2, and 5 atomic percent (at.%), on the hot corrosion behavior of Mo3Si intermetallic alloy in 60 wt.% NaNO3 + 40 wt.% KNO3 at 600 degrees C, has been evaluated by using electrochemical methods. Electrochemical techniques included electrochemical noise analyses (ENA), polarization curves (PC), and linear polarization resistance (LPR). The average grain size decreased when the specimen was alloyed with Zr from 90 mu m for as-cast Mo3Si, down to 25 and 10 mu m for alloys containing 1, 2, and 5 at.% Zr, respectively. All specimens showed a passive behavior, with the corrosion current density values decreasing for adding either 1 or 2 at.% Zr but increasing for specimens containing 5 at.% Zr. The corrosion process was under charge transfer control for the as-cast alloy or when 1 or 2 at.% Zr was added, but it was diffusion controlled when 5 at.% Zr was added. The noise resistance value (R-n) increased for specimens containing 1 or 2 at.% Zr but decreased when 5 at.% Zr was added. X-ray diffraction showed the presence of SiO2, MoO4, Mo4O11, and ZrO2 in the passive layer.
引用
收藏
页码:1066 / 1075
页数:10
相关论文
共 50 条
  • [1] molten NaNO3, KNO3, and their mixtures
    Zhao, Qing-Guo
    Hu, Chun-Xu
    Liu, Su-Jie
    Guo, Hang
    Wu, Yu-Ting
    LEVERAGING ENERGY TECHNOLOGIES AND POLICY OPTIONS FOR LOW CARBON CITIES, 2017, 143 : 774 - 779
  • [2] REACTIONS OF BENZENE WITH THE MOLTEN NANO3 - KNO3 EUTECTIC MIXTURE
    EVEN, C
    FAUQUENOIT, C
    CLAES, P
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1980, 89 (07): : 559 - 560
  • [3] DETERMINATION OF HYPERSONIC VELOCITIES IN MOLTEN-SALTS NANO3 AND KNO3
    GUSTAFSSON, SE
    KNAPE, HEG
    TORELL, LM
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1974, A 29 (03): : 469 - 472
  • [4] Thermal conductivity of molten NaNO3 and KNO3
    Nagasaka, Y.
    Nagashima, A.
    International Journal of Thermophysics, 1991, 12 (05)
  • [5] THE THERMAL-CONDUCTIVITY OF MOLTEN NANO3 AND KNO3
    NAGASAKA, Y
    NAGASHIMA, A
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1991, 12 (05) : 769 - 781
  • [6] Measurementand calculation of Raman spectroscopy of NaNO3,KNO3 AND NaNO2 molten salts
    Hu, Xianwei
    Shi, Xiangkai
    Zhang, Kuan
    Li, Xiaofei
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2018, 39 (04): : 952 - 956
  • [7] DENSITY OF MOLTEN NANO2, NANO3, KNO3, AND THEIR EUTECTIC
    DIBIROV, MA
    BOCHKOV, MM
    LEVINA, LN
    MOZGOVOI, AG
    INORGANIC MATERIALS, 1992, 28 (04) : 708 - 710
  • [8] The NaNO3 - KNO3 phase diagram
    Benages-Vilau, R.
    Calvet, T.
    Cuevas-Diarte, M. A.
    Oonk, H. A. J.
    PHASE TRANSITIONS, 2016, 89 (01) : 1 - 20
  • [9] 316L stainless steel corrosion in molten salts NaNO3 KNO3 NaNO2 simulating storage conditions
    Sandoval-Amador, A.
    Santander-Vega, A. J.
    Amaya-Caceres, C. C.
    Estupinan-Duran, H. A.
    Pena-Ballesteros, D. Y.
    INTERNATIONAL SCIENCE WEEK: CHALLENGES OF SCIENCE IN THE 21ST CENTURY, 2019, 1159
  • [10] Research on the effect of adding NaCl on the performance of KNO3–NaNO3 binary molten salt
    Y. Li
    W. W. Tan
    C. G. Wang
    Q. Z. Zhu
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 733 - 739