Approximation of Beta-Jacobi Ensembles by Beta-Laguerre Ensembles

被引:2
|
作者
Ma, Yutao [1 ,2 ]
Shen, Xinmei [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[3] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 01期
基金
中央高校基本科研业务费专项资金资助; 国家重点研发计划; 中国国家自然科学基金;
关键词
Beta-Laguerre ensembles; beta-Jacobi ensembles; total variation distance; Kullback-Leibler divergence; LIMIT-THEOREMS; MATRIX;
D O I
10.1007/s11464-020-0018-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider beta-Laguerre ensembles mu with parameters m, a(1) and beta-Jacobi ensembles lambda with parameters m, a(1), a(2). With the help of tridiagonal models of beta ensembles, we are able to prove that lim(a2)->infinity d( L (2a lambda), L (mu)) = 0 if a(1)m = o(a(2)) and lim(a2)->infinity d( L (2a lambda), L (mu)) > 0 if lim(a2)->infinity (a1m)/(a2) = sigma> 0, by contrast, where a := a(1) + a(2) and d is total variation distance or Kullback{Leibler divergence. This result improves the approximation in [9].
引用
收藏
页码:225 / 252
页数:28
相关论文
共 50 条