Perspectives for self-driving labs in synthetic biology

被引:30
|
作者
Martin, Hector G. [1 ,2 ,3 ,4 ]
Radivojevic, Tijana [1 ,2 ,3 ]
Zucker, Jeremy [18 ]
Bouchard, Kristofer [1 ,5 ,6 ,7 ]
Sustarich, Jess [3 ,17 ]
Peisert, Sean [5 ,9 ]
Arnold, Dan [8 ]
Hillson, Nathan [1 ,2 ,3 ]
Babnigg, Gyorgy [2 ,15 ]
Marti, Jose M. [1 ,2 ,3 ,10 ]
Mungall, Christopher J. [1 ]
Beckham, Gregg [2 ]
Waldburger, Lucas
Carothers, James [13 ,14 ]
Sundaram, ShivShankar [11 ,12 ]
Agarwal, Deb [5 ]
Simmons, Blake A. [1 ,2 ,3 ]
Backman, Tyler [1 ,3 ]
Banerjee, Deepanwita [1 ,3 ]
Tanjore, Deepti [1 ,2 ,16 ]
Ramakrishnan, Lavanya [5 ]
Singh, Anup [3 ,11 ]
机构
[1] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[2] Agile BioFoundry, DOE, Emeryville, CA 94608 USA
[3] Joint BioEnergy Inst, Emeryville, CA 94608 USA
[4] BCAM Basque Ctr Appl Math, Bilbao, Spain
[5] Lawrence Berkeley Natl Lab, Sci Data Div, Berkeley, CA USA
[6] Helen Wills Neurosci Inst, Berkeley, CA USA
[7] Redwood Ctr Theoret Neurosci, Berkeley, CA USA
[8] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA
[9] Univ Calif Davis, Dept Comp Sci, Davis, CA USA
[10] Lawrence Livermore Natl Lab, Global Secur Comp Applicat Div, Livermore, CA USA
[11] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA USA
[12] Lawrence Livermore Natl Lab, Ctr Bioengn, Livermore, CA USA
[13] Univ Washington, Mol Engn & Sci Inst, Dept Chem Engn, Seattle, WA USA
[14] Univ Washington, Ctr Synthet Biol, Seattle, WA USA
[15] Argonne Natl Lab, Biosci Div, Argonne, IL USA
[16] Lawrence Berkeley Natl Lab, Adv Biofuels & Bioprod Proc Dev Unit, Berkeley, CA USA
[17] Sandia Natl Labs, Biomat & Biomfg Div, Livermore, CA USA
[18] Pacific Northwest Natl Labs, Earth & Biol Sci Div, Richland, WA USA
基金
美国国家科学基金会;
关键词
EXPERIMENTATION; GENERATION; ROBOT;
D O I
10.1016/j.copbio.2022.102881
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Self-driving labs (SDLs) combine fully automated experiments with artificial intelligence (AI) that decides the next set of experiments. Taken to their ultimate expression, SDLs could usher a new paradigm of scientific research, where the world is probed, interpreted, and explained by machines for human benefit. While there are functioning SDLs in the fields of chemistry and materials science, we contend that synthetic biology provides a unique opportunity since the genome provides a single target for affecting the incredibly wide repertoire of biological cell behavior. However, the level of investment required for the creation of biological SDLs is only warranted if directed toward solving difficult and enabling biological questions. Here, we discuss challenges and opportunities in creating SDLs for synthetic biology.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Driving school for self-driving labs
    Snapp, Kelsey L.
    Brown, Keith A.
    DIGITAL DISCOVERY, 2023, 2 (05): : 1620 - 1629
  • [2] Science acceleration and accessibility with self-driving labs
    Richard B. Canty
    Jeffrey A. Bennett
    Keith A. Brown
    Tonio Buonassisi
    Sergei V. Kalinin
    John R. Kitchin
    Benji Maruyama
    Robert G. Moore
    Joshua Schrier
    Martin Seifrid
    Shijing Sun
    Tejs Vegge
    Milad Abolhasani
    Nature Communications, 16 (1)
  • [3] The rise of self-driving labs in chemical and materials sciences
    Abolhasani, Milad
    Kumacheva, Eugenia
    NATURE SYNTHESIS, 2023, 2 (06): : 483 - 492
  • [4] The rise of self-driving labs in chemical and materials sciences
    Milad Abolhasani
    Eugenia Kumacheva
    Nature Synthesis, 2023, 2 : 483 - 492
  • [5] The Lab of the Future: Self-Driving Labs for Molecule Discovery
    Ekins, Sean
    GEN BIOTECHNOLOGY, 2024, 3 (02): : 83 - 86
  • [6] Autonomous chemistry: Navigating self-driving labs in chemical and material sciences
    Bayley, Oliver
    Savino, Elia
    Slattery, Aidan
    Noel, Timothy
    MATTER, 2024, 7 (07) : 2382 - 2398
  • [7] RABIT, a Robot Arm Bug Intervention Tool for Self-Driving Labs
    Wattoo, Zainab Saeed
    Vitis, Petal
    Zhu, Ruizhe
    Depner, Noah
    Chang, Ivory
    Hein, Jason
    Gujarati, Arpan
    Seltzer, Margo
    2024 54TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS, DSN 2024, 2024, : 353 - 361
  • [8] SELF-DRIVING
    Marris, Laura
    YALE REVIEW, 2018, 106 (03): : 90 - 90
  • [9] Biological research and self-driving labs in deep space supported by artificial intelligence
    Sanders, Lauren M.
    Scott, Ryan T.
    Yang, Jason H.
    Qutub, Amina Ann
    Garcia Martin, Hector
    Berrios, Daniel C.
    Hastings, Jaden J. A.
    Rask, Jon
    Mackintosh, Graham
    Hoarfrost, Adrienne L.
    Chalk, Stuart
    Kalantari, John
    Khezeli, Kia
    Antonsen, Erik L.
    Babdor, Joel
    Barker, Richard
    Baranzini, Sergio E.
    Beheshti, Afshin
    Delgado-Aparicio, Guillermo M.
    Glicksberg, Benjamin S.
    Greene, Casey S.
    Haendel, Melissa
    Hamid, Arif A.
    Heller, Philip
    Jamieson, Daniel
    Jarvis, Katelyn J.
    Komarova, Svetlana V.
    Komorowski, Matthieu
    Kothiyal, Prachi
    Mahabal, Ashish
    Manor, Uri
    Mason, Christopher E.
    Matar, Mona
    Mias, George I.
    Miller, Jack
    Myers Jr, Jerry G.
    Nelson, Charlotte
    Oribello, Jonathan
    Park, Seung-min
    Parsons-Wingerter, Patricia
    Prabhu, R. K.
    Reynolds, Robert J.
    Saravia-Butler, Amanda
    Saria, Suchi
    Sawyer, Aenor
    Singh, Nitin Kumar
    Snyder, Michael
    Soboczenski, Frank
    Soman, Karthik
    Theriot, Corey A.
    NATURE MACHINE INTELLIGENCE, 2023, 5 (03) : 208 - 219
  • [10] Performance metrics to unleash the power of self-driving labs in chemistry and materials science
    Volk, Amanda A.
    Abolhasani, Milad
    NATURE COMMUNICATIONS, 2024, 15 (01)