How Can the Trust-Change Direction be Measured and Identified During Takeover Transitions in Conditionally Automated Driving? Using Physiological Responses and Takeover-Related Factors

被引:11
|
作者
Yi, Binlin [1 ]
Cao, Haotian [1 ]
Song, Xiaolin [1 ,4 ]
Wang, Jianqiang [2 ]
Zhao, Song [3 ]
Guo, Wenfeng [1 ]
Cao, Dongpu [3 ]
机构
[1] Hunan Univ, Changsha, Peoples R China
[2] Tsinghua Univ, Beijing, Peoples R China
[3] Univ Waterloo, Waterloo, ON, Canada
[4] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
trust-change directions; conditionally automated driving; takeover transitions; physiological parameters; random forest; DRIVERS TRUST; GAZE BEHAVIOR; VEHICLES; PREDICTION; STRESS; RISK;
D O I
10.1177/00187208221143855
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Objective This paper proposes an objective method to measure and identify trust-change directions during takeover transitions (TTs) in conditionally automated vehicles (AVs). Background Takeover requests (TORs) will be recurring events in conditionally automated driving that could undermine trust, and then lead to inappropriate reliance on conditionally AVs, such as misuse and disuse. Method 34 drivers engaged in the non-driving-related task were involved in a sequence of takeover events in a driving simulator. The relationships and effects between drivers' physiological responses, takeover-related factors, and trust-change directions during TTs were explored by the combination of an unsupervised learning algorithm and statistical analyses. Furthermore, different typical machine learning methods were applied to establish recognition models of trust-change directions during TTs based on takeover-related factors and physiological parameters. Result Combining the change values in the subjective trust rating and monitoring behavior before and after takeover can reliably measure trust-change directions during TTs. The statistical analysis results showed that physiological parameters (i.e., skin conductance and heart rate) during TTs are negatively linked with the trust-change directions. And drivers were more likely to increase trust during TTs when they were in longer TOR lead time, with more takeover frequencies, and dealing with the stationary vehicle scenario. More importantly, the F1-score of the random forest (RF) model is nearly 77.3%. Conclusion The features investigated and the RF model developed can identify trust-change directions during TTs accurately. Application Those findings can provide additional support for developing trust monitoring systems to mitigate both drivers' overtrust and undertrust in conditionally AVs.
引用
收藏
页码:1276 / 1301
页数:26
相关论文
共 2 条