Multivariate functional subspace classification for high-dimensional longitudinal data

被引:2
|
作者
Fukuda, Tatsuya [1 ]
Matsui, Hidetoshi [2 ]
Takada, Hiroya [3 ]
Misumi, Toshihiro [4 ]
Konishi, Sadanori [5 ]
机构
[1] TDSE Inc, 3-20-2 Nishi Shinjuku,Shinjuku Ku, Tokyo 1631427, Japan
[2] Shiga Univ, Fac Data Sci, 1-1-1 Banba, Hikone, Shiga 5228522, Japan
[3] Cacco Inc, 1-5-31 Motoakasaka,Minato Ku, Tokyo 1070051, Japan
[4] Natl Canc Ctr Hosp East, Dept Data Sci, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[5] Kyushu Univ, Fac Math, 744 Motooka,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
关键词
Classification; Functional data analysis; High-dimensional data; Subspace method;
D O I
10.1007/s42081-023-00226-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a multi-class classification method for multivariate functional data using the subspace method. The subspace method reduces the dimension of data for each class by mapping the data onto the subspaces, and then classifies the data to the class with the largest similarity to the subspace. We apply multivariate functional principal component analysis to the data for each class to obtain the subspaces. Since the subspace based on the functional data depends on time, we integrate the similarity between the data to be classified and the subspace. The proposed method can be easily applied to high-dimensional data, since it greatly reduces the dimension of the data. Simulation and real data analysis show that our method provides effective classification results.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Learning distance to subspace for the nearest subspace methods in high-dimensional data classification
    Zhu, Rui
    Dong, Mingzhi
    Xue, Jing-Hao
    INFORMATION SCIENCES, 2019, 481 : 69 - 80
  • [2] A modular eigen subspace scheme for high-dimensional data classification
    Chang, YL
    Han, CC
    Jou, FD
    Fan, KC
    Chen, KS
    Chang, JH
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (07): : 1131 - 1143
  • [3] Multivariate Feature Ranking With High-Dimensional Data for Classification Tasks
    Jimenez, Fernando
    Sanchez, Gracia
    Palma, Jose
    Miralles-Pechuan, Luis
    Botia, Juan A.
    IEEE ACCESS, 2022, 10 : 60421 - 60437
  • [4] Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data
    Qian, Fang
    Chen, Yu
    Zhang, Weiping
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [5] Adaptive banding covariance estimation for high-dimensional multivariate longitudinal data
    Qian, Fang
    Zhang, Weiping
    Chen, Yu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 906 - 938
  • [6] Adaptive Subspace Optimization Ensemble Method for High-Dimensional Imbalanced Data Classification
    Xu, Yuhong
    Yu, Zhiwen
    Chen, C. L. Philip
    Liu, Zhulin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (05) : 2284 - 2297
  • [7] Monte Carlo Subspace Method: An Incremental Approach to High-Dimensional Data Classification
    Sakai, Tomoya
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2978 - 2981
  • [8] Analyzing high-dimensional data by subspace validity
    Amir, A
    Kashi, R
    Netanyahu, NS
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 473 - 476
  • [9] Subspace selection for clustering high-dimensional data
    Baumgartner, C
    Plant, C
    Kailing, K
    Kriegel, HP
    Kröger, P
    FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 11 - 18
  • [10] Multivariate analysis of variance and change points estimation for high-dimensional longitudinal data
    Zhong, Ping-Shou
    Li, Jun
    Kokoszka, Piotr
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (02) : 375 - 405